IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v60y2021i2d10.1007_s00181-019-01784-4.html
   My bibliography  Save this article

Modeling fractional cointegration between high and low stock prices in Asian countries

Author

Listed:
  • Alia Afzal

    (Leibniz University Hannover)

  • Philipp Sibbertsen

    (Leibniz University Hannover)

Abstract

The present study analyzes the interrelationship among daily high and low stock market indices in some developing stock markets with the perspective of fractional integration and cointegration. The analysis is performed by applying fractionally cointegrated vector error correction models (FVECM) as they can explain the short-run and long-run dynamics of high and low stock prices simultaneously. This study employs daily stock market index data from six major Asian countries and finds that daily (log) highs and lows do follow a long-run relationship. We find very slow hyperbolic decay of autocorrelations in the range series for all observed stock prices, and this dependence supports the hypothesis of nonstationary volatility in some cases. Forecasted highs and lows based on the FVECM provide better forecasts than traditional models based on the MSE and MAE. The FVECM range forecasts also show better out of sample performance over the HAR and ARFIMA models fitted to the range series.

Suggested Citation

  • Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
  • Handle: RePEc:spr:empeco:v:60:y:2021:i:2:d:10.1007_s00181-019-01784-4
    DOI: 10.1007/s00181-019-01784-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-019-01784-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-019-01784-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. John Cotter, 2005. "Uncovering long memory in high frequency UK futures," The European Journal of Finance, Taylor & Francis Journals, vol. 11(4), pages 325-337.
    3. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    4. Søren Johansen & Morten Ørregaard Nielsen, 2019. "Nonstationary Cointegration in the Fractionally Cointegrated VAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(4), pages 519-543, July.
    5. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    6. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    7. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    8. Lu, Yang K. & Perron, Pierre, 2010. "Modeling and forecasting stock return volatility using a random level shift model," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
    9. Kellard, Neil & Dunis, Christian & Sarantis, Nicholas, 2010. "Foreign exchange, fractional cointegration and the implied-realized volatility relation," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 882-891, April.
    10. Carlos Velasco, 1999. "Gaussian Semiparametric Estimation of Non‐stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(1), pages 87-127, January.
    11. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    12. Philipp Sibbertsen, 2004. "Long memory in volatilities of German stock returns," Empirical Economics, Springer, vol. 29(3), pages 477-488, September.
    13. Johansen, Søren & Nielsen, Morten Ørregaard, 2010. "Likelihood inference for a nonstationary fractional autoregressive model," Journal of Econometrics, Elsevier, vol. 158(1), pages 51-66, September.
    14. Yin-Wong Cheung, 2007. "An empirical model of daily highs and lows," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 1-20.
    15. Tim Bollerslev & Jonathan H. Wright, 2001. "High-Frequency Data, Frequency Domain Inference, And Volatility Forecasting," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 596-602, November.
    16. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    17. Atje, Raymond & Jovanovic, Boyan, 1993. "Stock markets and development," European Economic Review, Elsevier, vol. 37(2-3), pages 632-640, April.
    18. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    19. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013. "On the predictability of stock prices: A case for high and low prices," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.
    20. Jegadeesh, Narasimhan, 1990. "Evidence of Predictable Behavior of Security Returns," Journal of Finance, American Finance Association, vol. 45(3), pages 881-898, July.
    21. Angela He & Alan Wan, 2009. "Predicting daily highs and lows of exchange rates: a cointegration analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(11), pages 1191-1204.
    22. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    23. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    24. Baruník, Jozef & Dvořáková, Sylvie, 2015. "An empirical model of fractionally cointegrated daily high and low stock market prices," Economic Modelling, Elsevier, vol. 45(C), pages 193-206.
    25. Shiller, Robert J, 1981. "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?," American Economic Review, American Economic Association, vol. 71(3), pages 421-436, June.
    26. Bollerslev, Tim & Wright, Jonathan H., 2000. "Semiparametric estimation of long-memory volatility dependencies: The role of high-frequency data," Journal of Econometrics, Elsevier, vol. 98(1), pages 81-106, September.
    27. Morten Ø. Nielsen & Lealand Morin, 2014. "Fcvarmodel.m: A Matlab Software Package For Estimation And Testing In The Fractionally Cointegrated Var Model," Working Paper 1273, Economics Department, Queen's University.
    28. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    29. Beckers, Stan, 1983. "Variances of Security Price Returns Based on High, Low, and Closing Prices," The Journal of Business, University of Chicago Press, vol. 56(1), pages 97-112, January.
    30. Jondeau, Eric, 2015. "The dynamics of squared returns under contemporaneous aggregation of GARCH models," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 80-93.
    31. Nielsen, Morten Orregaard & Shimotsu, Katsumi, 2007. "Determining the cointegrating rank in nonstationary fractional systems by the exact local Whittle approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 574-596, December.
    32. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    33. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    34. Shimotsu, Katsumi, 2010. "Exact Local Whittle Estimation Of Fractional Integration With Unknown Mean And Time Trend," Econometric Theory, Cambridge University Press, vol. 26(2), pages 501-540, April.
    35. Cheung, Yan-Leung & Cheung, Yin-Wong & He, Angela W.W. & Wan, Alan T.K., 2010. "A trading strategy based on Callable Bull/Bear Contracts," Pacific-Basin Finance Journal, Elsevier, vol. 18(2), pages 186-198, April.
    36. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    37. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    38. He, Angela W.W. & Kwok, Jerry T.K. & Wan, Alan T.K., 2010. "An empirical model of daily highs and lows of West Texas Intermediate crude oil prices," Energy Economics, Elsevier, vol. 32(6), pages 1499-1506, November.
    39. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    40. Chatzikonstanti, Vasiliki & Venetis, Ioannis A., 2015. "Long memory in log-range series: Do structural breaks matter?," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 104-113.
    41. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
    42. De Bondt, Werner F M & Thaler, Richard, 1985. "Does the Stock Market Overreact?," Journal of Finance, American Finance Association, vol. 40(3), pages 793-805, July.
    43. Bruce N. Lehmann, 1990. "Fads, Martingales, and Market Efficiency," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 105(1), pages 1-28.
    44. Clifford M. Hurvich & Willa W. Chen, 2000. "An Efficient Taper for Potentially Overdifferenced Long‐memory Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(2), pages 155-180, March.
    45. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2007. "Nonstationarity-extended local Whittle estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1353-1384, December.
    46. Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A high-low model of daily stock price ranges," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.
    47. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    48. Kunitomo, Naoto, 1992. "Improving the Parkinson Method of Estimating Security Price Volatilities," The Journal of Business, University of Chicago Press, vol. 65(2), pages 295-302, April.
    49. Serpil TURKYILMAZ & Mesut BALIBEY, 2014. "Long Memory Behavior in the Returns of Pakistan Stock Market: ARFIMA-FIGARCH Models," International Journal of Economics and Financial Issues, Econjournals, vol. 4(2), pages 400-410.
    50. John F. Garvey & Liam A. Gallagher, 2012. "The Realised–Implied Volatility Relationship: Recent Empirical Evidence from FTSE‐100 Stocks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(7), pages 639-660, November.
    51. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    52. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    53. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(3), pages 651-676, June.
    54. Cheung, Yin-Wong & Chinn, Menzie David, 2001. "Currency traders and exchange rate dynamics: a survey of the US market," Journal of International Money and Finance, Elsevier, vol. 20(4), pages 439-471, August.
    55. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    56. Granger, Clive W J, 1986. "Developments in the Study of Cointegrated Economic Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 48(3), pages 213-228, August.
    57. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    58. Heiko Ebens, 1999. "Realized Stock Volatility," Economics Working Paper Archive 420, The Johns Hopkins University,Department of Economics, revised Jul 1999.
    59. James G. MacKinnon & Morten Ørregaard Nielsen, 2014. "Numerical Distribution Functions Of Fractional Unit Root And Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 161-171, January.
    60. Chinn, Menzie D. & Meese, Richard A., 1995. "Banking on currency forecasts: How predictable is change in money?," Journal of International Economics, Elsevier, vol. 38(1-2), pages 161-178, February.
    61. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    62. Mark, Nelson C, 1995. "Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability," American Economic Review, American Economic Association, vol. 85(1), pages 201-218, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013. "On the predictability of stock prices: A case for high and low prices," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.
    2. Leandro Maciel, 2020. "Technical analysis based on high and low stock prices forecasts: evidence for Brazil using a fractionally cointegrated VAR model," Empirical Economics, Springer, vol. 58(4), pages 1513-1540, April.
    3. Yaya, OlaOluwa S & Gil-Alana, Luis A., 2018. "High and Low Intraday Commodity Prices: A Fractional Integration and Cointegration Approach," MPRA Paper 90518, University Library of Munich, Germany.
    4. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020. "High and low prices and the range in the European stock markets: A long-memory approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    5. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    6. Baruník, Jozef & Dvořáková, Sylvie, 2015. "An empirical model of fractionally cointegrated daily high and low stock market prices," Economic Modelling, Elsevier, vol. 45(C), pages 193-206.
    7. Luis A. Gil‐Alana & Robert Mudida & OlaOluwa S. Yaya & Kazeem A. Osuolale & Ahamuefula E. Ogbonna, 2021. "Mapping US presidential terms with S&P500 index: Time series analysis approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1938-1954, April.
    8. Gil-Alana, Luis A. & Mudida, Robert & Yaya, OlaOluwa S & Osuolale, Kazeem & Ogbonna, Ephraim A, 2019. "Influence of US Presidential Terms on S&P500 Index Using a Time Series Analysis Approach," MPRA Paper 93941, University Library of Munich, Germany.
    9. Gil-Alana, Luis A. & Yaya, OlaOluwa S. & Akinsomi, Omokolade & Coskun, Yener, 2020. "How do stocks in BRICS co-move with real estate stocks?," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 93-101.
    10. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    11. Guglielmo Maria Caporale & Luis Gil-Alana, 2012. "Long Memory and Volatility Dynamics in the US Dollar Exchange Rate," Multinational Finance Journal, Multinational Finance Journal, vol. 16(1-2), pages 105-136, March - J.
    12. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," Discussion Papers 19/01, University of Nottingham, Granger Centre for Time Series Econometrics.
    13. Gil-Alana, Luis A. & Shittu, Olanrewaju I. & Yaya, OlaOluwa S., 2014. "On the persistence and volatility in European, American and Asian stocks bull and bear markets," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 149-162.
    14. OlaOluwa S. Yaya & Xuan Vinh Vo & Ahamuefula E. Ogbonna & Adeolu O. Adewuyi, 2022. "Modelling cryptocurrency high–low prices using fractional cointegrating VAR," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 489-505, January.
    15. Eduardo Rossi & Paolo Santucci de Magistris, 2009. "A No Arbitrage Fractional Cointegration Analysis Of The Range Based Volatility," CREATES Research Papers 2009-31, Department of Economics and Business Economics, Aarhus University.
    16. Luis A. Gil-Alana & Yun Cao, 2011. "Stock market prices in China. Efficiency, mean reversion, long memory volatility and other implicit dynamics," Faculty Working Papers 12/11, School of Economics and Business Administration, University of Navarra.
    17. Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A high-low model of daily stock price ranges," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.
    18. Al-Shboul, Mohammad & Anwar, Sajid, 2016. "Fractional integration in daily stock market indices at Jordan's Amman stock exchange," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 16-37.
    19. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    20. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," CREATES Research Papers 2019-02, Department of Economics and Business Economics, Aarhus University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:60:y:2021:i:2:d:10.1007_s00181-019-01784-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.