IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v77y2007i8p803-810.html
   My bibliography  Save this article

Estimation of regression coefficients of interest when other regression coefficients are of no interest: The case of non-normal errors

Author

Listed:
  • Zou, Guohua
  • Wan, Alan T.K.
  • Wu, Xiaoyong
  • Chen, Ti

Abstract

This note considers the problem of estimating regression coefficients when some other coefficients in the model are of no interest. For the case of normal errors, Magnus and Durbin [1999. Estimation of regression coefficients of interest when other regression coefficients are of no interest. Econometrica 67, 639-643] and Danilov and Magnus [2004. On the harm that ignoring pretesting can cause. J. Econometrics 122, 27-46] studied this problem and established an equivalence theorem which states that the problem of estimating the coefficients of interest is equivalent to that of finding an optimal estimator of the vector of coefficients of no interest given a single observation from a normal distribution. The aim of this note is to generalize their findings to the large sample non-normal errors case. Some applications of our results are also given.

Suggested Citation

  • Zou, Guohua & Wan, Alan T.K. & Wu, Xiaoyong & Chen, Ti, 2007. "Estimation of regression coefficients of interest when other regression coefficients are of no interest: The case of non-normal errors," Statistics & Probability Letters, Elsevier, vol. 77(8), pages 803-810, April.
  • Handle: RePEc:eee:stapro:v:77:y:2007:i:8:p:803-810
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00006-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim T-H. & White H., 2001. "James-Stein-Type Estimators in Large Samples With Application to the Least Absolute Deviations Estimator," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 697-705, June.
    2. Giles, Judith A., 1991. "Pre-testing for linear restrictions in a regression model with spherically symmetric disturbances," Journal of Econometrics, Elsevier, vol. 50(3), pages 377-398, December.
    3. Hjort N.L. & Claeskens G., 2003. "Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 879-899, January.
    4. Ullah, Aman & Ullah, Shobha, 1978. "Double k-Class Estimators of Coefficients in Linear Regression," Econometrica, Econometric Society, vol. 46(3), pages 705-722, May.
    5. Jan R. Magnus & J. Durbin, 1999. "Estimation of Regression Coefficients of Interest When Other Regression Coefficients Are of No Interest," Econometrica, Econometric Society, vol. 67(3), pages 639-644, May.
    6. Jan R. Magnus, 2002. "Estimation of the mean of a univariate normal distribution with known variance," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 225-236, June.
    7. Danilov, Dmitry & Magnus, J.R.Jan R., 2004. "On the harm that ignoring pretesting can cause," Journal of Econometrics, Elsevier, vol. 122(1), pages 27-46, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Clarke, Judith A., 2008. "On weighted estimation in linear regression in the presence of parameter uncertainty," Economics Letters, Elsevier, vol. 100(1), pages 1-3, July.
    2. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2018. "Weighted-average least squares estimation of generalized linear models," Journal of Econometrics, Elsevier, vol. 204(1), pages 1-17.
    3. An, Lihua & Nkurunziza, Sévérien & Fung, Karen Y. & Krewski, Daniel & Luginaah, Isaac, 2009. "Shrinkage estimation in general linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2537-2549, May.
    4. Judith Anne Clarke, 2017. "Model Averaging OLS and 2SLS: An Application of the WALS Procedure," Econometrics Working Papers 1701, Department of Economics, University of Victoria.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clarke, Judith A., 2008. "On weighted estimation in linear regression in the presence of parameter uncertainty," Economics Letters, Elsevier, vol. 100(1), pages 1-3, July.
    2. Magnus, Jan R. & Powell, Owen & Prüfer, Patricia, 2010. "A comparison of two model averaging techniques with an application to growth empirics," Journal of Econometrics, Elsevier, vol. 154(2), pages 139-153, February.
    3. Judith Anne Clarke, 2017. "Model Averaging OLS and 2SLS: An Application of the WALS Procedure," Econometrics Working Papers 1701, Department of Economics, University of Victoria.
    4. Magnus, Jan R. & Wan, Alan T.K. & Zhang, Xinyu, 2011. "Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1331-1341, March.
    5. Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
    6. Giuseppe De Luca & Jan R. Magnus, 2011. "Bayesian model averaging and weighted-average least squares: Equivariance, stability, and numerical issues," Stata Journal, StataCorp LP, vol. 11(4), pages 518-544, December.
    7. Ali Mehrabani & Aman Ullah, 2022. "Weighted Average Estimation in Panel Data," Working Papers 202209, University of California at Riverside, Department of Economics, revised Apr 2022.
    8. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2018. "Weighted-average least squares estimation of generalized linear models," Journal of Econometrics, Elsevier, vol. 204(1), pages 1-17.
    9. Jan R. Magnus & Dmitry Danilov, 2004. "Forecast accuracy after pretesting with an application to the stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(4), pages 251-274.
    10. Einmahl, J.H.J. & Magnus, J.R. & Kumar, K., 2011. "On the Choice of Prior in Bayesian Model Averaging," Discussion Paper 2011-003, Tilburg University, Center for Economic Research.
    11. Magnus, J.R. & Powell, O.R. & Prüfer, P., 2008. "A Comparison of Two Averaging Techniques with an Application to Growth Empirics," Other publications TiSEM 0392dffa-51e0-4bc9-9644-f, Tilburg University, School of Economics and Management.
    12. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    13. Srdelić, Leonarda & Dávila-Fernández, Marwil J., 2024. "International trade and economic growth in Croatia," Structural Change and Economic Dynamics, Elsevier, vol. 68(C), pages 240-258.
    14. Aedın Doris & Donal O’Neill & Olive Sweetman, 2011. "GMM estimation of the covariance structure of longitudinal data on earnings," Stata Journal, StataCorp LP, vol. 11(3), pages 439-459, September.
    15. Becker William & Paruolo Paolo & Saltelli Andrea, 2021. "Variable Selection in Regression Models Using Global Sensitivity Analysis," Journal of Time Series Econometrics, De Gruyter, vol. 13(2), pages 187-233, July.
    16. Nicolas End, 2020. "Rousseau's social contract or Machiavelli's virtue? A measure of fiscal credibility," Working Papers halshs-03078704, HAL.
    17. Hai Wang & Xinjie Chen & Nancy Flournoy, 2016. "The focused information criterion for varying-coefficient partially linear measurement error models," Statistical Papers, Springer, vol. 57(1), pages 99-113, March.
    18. Leeb, Hannes & Pötscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
    19. Judge, George G. & Mittelhammer, Ron C, 2003. "A Semi-Parametric Basis for Combining Estimation Problems Under Quadratic Loss," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8z25j0w3, Department of Agricultural & Resource Economics, UC Berkeley.
    20. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2022. "Sampling properties of the Bayesian posterior mean with an application to WALS estimation," Journal of Econometrics, Elsevier, vol. 230(2), pages 299-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:77:y:2007:i:8:p:803-810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.