IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v71y2019i5d10.1007_s10463-018-0672-y.html
   My bibliography  Save this article

Semiparametric estimation in regression with missing covariates using single-index models

Author

Listed:
  • Zhuoer Sun

    (Texas A&M University)

  • Suojin Wang

    (Texas A&M University)

Abstract

We investigate semiparametric estimation of regression coefficients through generalized estimating equations with single-index models when some covariates are missing at random. Existing popular semiparametric estimators may run into difficulties when some selection probabilities are small or the dimension of the covariates is not low. We propose a new simple parameter estimator using a kernel-assisted estimator for the augmentation by a single-index model without using the inverse of selection probabilities. We show that under certain conditions the proposed estimator is as efficient as the existing methods based on standard kernel smoothing, which are often practically infeasible in the case of multiple covariates. A simulation study and a real data example are presented to illustrate the proposed method. The numerical results show that the proposed estimator avoids some numerical issues caused by estimated small selection probabilities that are needed in other estimators.

Suggested Citation

  • Zhuoer Sun & Suojin Wang, 2019. "Semiparametric estimation in regression with missing covariates using single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1201-1232, October.
  • Handle: RePEc:spr:aistmt:v:71:y:2019:i:5:d:10.1007_s10463-018-0672-y
    DOI: 10.1007/s10463-018-0672-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-018-0672-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-018-0672-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph G. Ibrahim & Ming-Hui Chen & Stuart R. Lipsitz & Amy H. Herring, 2005. "Missing-Data Methods for Generalized Linear Models: A Comparative Review," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 332-346, March.
    2. Peisong Han & Lu Wang, 2013. "Estimation with missing data: beyond double robustness," Biometrika, Biometrika Trust, vol. 100(2), pages 417-430.
    3. Wang, Suojin & Wang, C. Y., 2001. "A note on kernel assisted estimators in missing covariate regression," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 439-449, December.
    4. Hua Yun Chen, 2004. "Nonparametric and Semiparametric Models for Missing Covariates in Parametric Regression," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1176-1189, December.
    5. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    6. Samiran Sinha & Krishna K. Saha & Suojin Wang, 2014. "Semiparametric approach for non-monotone missing covariates in a parametric regression model," Biometrics, The International Biometric Society, vol. 70(2), pages 299-311, June.
    7. Zhou, Yong & Wan, Alan T. K & Wang, Xiaojing, 2008. "Estimating Equations Inference With Missing Data," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1187-1199.
    8. Peisong Han, 2014. "Multiply Robust Estimation in Regression Analysis With Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1159-1173, September.
    9. Peisong Han, 2016. "Combining Inverse Probability Weighting and Multiple Imputation to Improve Robustness of Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 246-260, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaogang Duan & Guosheng Yin, 2017. "Ensemble Approaches to Estimating the Population Mean with Missing Response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 899-917, December.
    2. Peisong Han, 2016. "Combining Inverse Probability Weighting and Multiple Imputation to Improve Robustness of Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 246-260, March.
    3. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    4. Peisong Han & Linglong Kong & Jiwei Zhao & Xingcai Zhou, 2019. "A general framework for quantile estimation with incomplete data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 305-333, April.
    5. Hamori, Shigeyuki & Motegi, Kaiji & Zhang, Zheng, 2019. "Calibration estimation of semiparametric copula models with data missing at random," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 85-109.
    6. Chen, Sixia & Haziza, David, 2018. "Jackknife empirical likelihood method for multiply robust estimation with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 258-268.
    7. Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    8. Chixiang Chen & Biyi Shen & Aiyi Liu & Rongling Wu & Ming Wang, 2021. "A multiple robust propensity score method for longitudinal analysis with intermittent missing data," Biometrics, The International Biometric Society, vol. 77(2), pages 519-532, June.
    9. Changbao Wu & Shixiao Zhang, 2019. "Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1082-1086, December.
    10. Yang Zhao & Meng Liu, 2021. "Unified approach for regression models with nonmonotone missing at random data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 87-101, March.
    11. Shu Yang & Yunshu Zhang, 2023. "Multiply robust matching estimators of average and quantile treatment effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 235-265, March.
    12. Han, Peisong & Song, Peter X.-K. & Wang, Lu, 2015. "Achieving semiparametric efficiency bound in longitudinal data analysis with dropouts," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 59-70.
    13. Xiang Zhou, 2022. "Semiparametric estimation for causal mediation analysis with multiple causally ordered mediators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 794-821, July.
    14. Lucia Babino & Andrea Rotnitzky & James Robins, 2019. "Multiple robust estimation of marginal structural mean models for unconstrained outcomes," Biometrics, The International Biometric Society, vol. 75(1), pages 90-99, March.
    15. Y Cui & E J Tchetgen Tchetgen, 2024. "Selective machine learning of doubly robust functionals," Biometrika, Biometrika Trust, vol. 111(2), pages 517-535.
    16. Yang Zhao, 2021. "Semiparametric model for regression analysis with nonmonotone missing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 461-475, June.
    17. Satoshi Hattori & Masayuki Henmi, 2014. "Stratified doubly robust estimators for the average causal effect," Biometrics, The International Biometric Society, vol. 70(2), pages 270-277, June.
    18. Lei Jin & Suojin Wang, 2010. "A Model Validation Procedure when Covariate Data are Missing at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 403-421, September.
    19. Yi Qian & Hui Xie, 2011. "No Customer Left Behind: A Distribution-Free Bayesian Approach to Accounting for Missing Xs in Marketing Models," Marketing Science, INFORMS, vol. 30(4), pages 717-736, July.
    20. Baojiang Chen & Xiao-Hua Zhou, 2011. "Doubly Robust Estimates for Binary Longitudinal Data Analysis with Missing Response and Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 830-842, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:71:y:2019:i:5:d:10.1007_s10463-018-0672-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.