IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v116y2017icp19-31.html
   My bibliography  Save this article

Detection of influential points as a byproduct of resampling-based variable selection procedures

Author

Listed:
  • De Bin, Riccardo
  • Boulesteix, Anne-Laure
  • Sauerbrei, Willi

Abstract

Influential points can cause severe problems when deriving a multivariable regression model. A novel approach to check for such points is proposed, based on the variable inclusion matrix, a simple way to summarize results from resampling-based variable selection procedures. The variable inclusion matrix reports whether a variable (column) is included in a regression model fitted on a pseudo-sample (row) generated from the original data (e.g., bootstrap sample or subsample). It is used to study the variable selection stability, to derive weights for model averaged predictors and in others investigations. Concentrating on variable selection, it also allows understanding whether the presence of a specific observation has an influence on the selection of a variable. From the variable inclusion matrix, indeed, the inclusion frequency (I-frequency) of each variable can be computed only in the pseudo-samples (i.e., rows) which contain the specific observation. When the procedure is repeated for each observation, it is possible to check for influential points through the distribution of the I-frequencies, visualized in a boxplot, or through a Grubbs’ test. Outlying values in the former case and significant results in the latter point to observations having an influence on the selection of a specific variable and therefore on the finally selected model. This novel approach is illustrated in two real data examples.

Suggested Citation

  • De Bin, Riccardo & Boulesteix, Anne-Laure & Sauerbrei, Willi, 2017. "Detection of influential points as a byproduct of resampling-based variable selection procedures," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 19-31.
  • Handle: RePEc:eee:csdana:v:116:y:2017:i:c:p:19-31
    DOI: 10.1016/j.csda.2017.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317301494
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riccardo De Bin & Silke Janitza & Willi Sauerbrei & Anne-Laure Boulesteix, 2016. "Subsampling versus bootstrapping in resampling-based model selection for multivariable regression," Biometrics, The International Biometric Society, vol. 72(1), pages 272-280, March.
    2. Anthony C. Atkinson, 2002. "Forward search added-variable t-tests and the effect of masked outliers on model selection," Biometrika, Biometrika Trust, vol. 89(4), pages 939-946, December.
    3. Nicolai Meinshausen & Peter Bühlmann, 2010. "Stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 417-473, September.
    4. Royston, P. & Sauerbrei, W., 2007. "Improving the robustness of fractional polynomial models by preliminary covariate transformation: A pragmatic approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4240-4253, May.
    5. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
    6. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
    7. Willems, Gert & Van Aelst, Stefan, 2005. "Fast and robust bootstrap for LTS," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 703-715, April.
    8. Billor, Nedret & Hadi, Ali S. & Velleman, Paul F., 2000. "BACON: blocked adaptive computationally efficient outlier nominators," Computational Statistics & Data Analysis, Elsevier, vol. 34(3), pages 279-298, September.
    9. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    2. Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
    3. Haili Zhang & Guohua Zou, 2020. "Cross-Validation Model Averaging for Generalized Functional Linear Model," Econometrics, MDPI, vol. 8(1), pages 1-35, February.
    4. Kenichiro McAlinn & Kosaku Takanashi, 2019. "Mean-shift least squares model averaging," Papers 1912.01194, arXiv.org.
    5. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    6. Edvard Bakhitov, 2020. "Frequentist Shrinkage under Inequality Constraints," Papers 2001.10586, arXiv.org.
    7. Christopher F. Parmeter & Alan T. K. Wan & Xinyu Zhang, 2019. "Model averaging estimators for the stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 51(2), pages 91-103, June.
    8. Xie, Tian, 2015. "Prediction model averaging estimator," Economics Letters, Elsevier, vol. 131(C), pages 5-8.
    9. Zhao, Shangwei & Xie, Tian & Ai, Xin & Yang, Guangren & Zhang, Xinyu, 2023. "Correcting sample selection bias with model averaging for consumer demand forecasting," Economic Modelling, Elsevier, vol. 123(C).
    10. Yuting Wei & Qihua Wang & Wei Liu, 2021. "Model averaging for linear models with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 535-553, June.
    11. Michael Schomaker & Christian Heumann, 2020. "When and when not to use optimal model averaging," Statistical Papers, Springer, vol. 61(5), pages 2221-2240, October.
    12. Yan Gao & Xinyu Zhang & Shouyang Wang & Terence Tai-leung Chong & Guohua Zou, 2019. "Frequentist model averaging for threshold models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 275-306, April.
    13. Rongjie Jiang & Liming Wang & Yang Bai, 2021. "Optimal model averaging estimator for semi-functional partially linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 167-194, February.
    14. Chu-An Liu & Biing-Shen Kuo & Wen-Jen Tsay, 2017. "Autoregressive Spectral Averaging Estimator," IEAS Working Paper : academic research 17-A013, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    15. Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics, revised Jan 2023.
    16. Shangwei Zhao & Jun Liao & Dalei Yu, 2020. "Model averaging estimator in ridge regression and its large sample properties," Statistical Papers, Springer, vol. 61(4), pages 1719-1739, August.
    17. Qingfeng Liu & Andrey L. Vasnev, 2019. "A Combination Method for Averaging OLS and GLS Estimators," Econometrics, MDPI, vol. 7(3), pages 1-12, September.
    18. Steven F. Lehrer & Tian Xie, 2022. "The Bigger Picture: Combining Econometrics with Analytics Improves Forecasts of Movie Success," Management Science, INFORMS, vol. 68(1), pages 189-210, January.
    19. Wang, Weiwei & Zhang, Qi & Zhang, Xinyu & Li, Xinmin, 2021. "Model averaging based on generalized method of moments," Economics Letters, Elsevier, vol. 200(C).
    20. Hongwei Zhang & Qiang He & Ben Jacobsen & Fuwei Jiang, 2020. "Forecasting stock returns with model uncertainty and parameter instability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 629-644, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:116:y:2017:i:c:p:19-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.