IDEAS home Printed from https://ideas.repec.org/a/vrs/foeste/v12y2012i2p103-125n11.html
   My bibliography  Save this article

The Impact of Macroeconomic Factors on Residential Property Price Indices in Europe

Author

Listed:
  • Renigier-Biłozor Małgorzata

    (University of Warmia and Mazury in Olsztyn, Poland Faculty of Geodesy and Land Management Department of Real Estate Management and Regional Development Prawochenskiego 15, 10-724 Olsztyn, Poland)

  • Wiśniewski Radosław

    (University of Warmia and Mazury in Olsztyn, Poland Faculty of Geodesy and Land Management Department of Real Estate Management and Regional Development Prawochenskiego 15, 10-724 Olsztyn, Poland)

Abstract

This paper aims to determine the influence of selected variables on residential property price indices for the European countries, with particular attention paid to Italy and Poland, using a rough set theory and an approach that uses a committee of artificial neural networks. Additionally, the overall analysis for each European country is presented.Quarterly time series data constituted the material for testing and empirical results. The developed models show that the economic and financial situation of European countries affects residential property markets. Residential property markets are connected, despite the fact that they are situated in different parts of Europe.The economic and financial crisis of countries has variable influence on prices of real estate. The results also suggest that methodology based on the rough set theory and a committee of artificial neural networks has the ability to learn, generalize, and converge the residential property prices index.

Suggested Citation

  • Renigier-Biłozor Małgorzata & Wiśniewski Radosław, 2012. "The Impact of Macroeconomic Factors on Residential Property Price Indices in Europe," Folia Oeconomica Stetinensia, Sciendo, vol. 12(2), pages 103-125, December.
  • Handle: RePEc:vrs:foeste:v:12:y:2012:i:2:p:103-125:n:11
    DOI: 10.2478/v10031-012-0036-3
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/v10031-012-0036-3
    Download Restriction: no

    File URL: https://libkey.io/10.2478/v10031-012-0036-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:arz:wpaper:eres1996-158 is not listed on IDEAS
    2. Limsombunchai, Visit, 2004. "House Price Prediction: Hedonic Price Model vs. Artificial Neural Network," 2004 Conference, June 25-26, 2004, Blenheim, New Zealand 97781, New Zealand Agricultural and Resource Economics Society.
    3. Agnello, Luca & Schuknecht, Ludger, 2011. "Booms and busts in housing markets: Determinants and implications," Journal of Housing Economics, Elsevier, vol. 20(3), pages 171-190, September.
    4. Carlos Martins-Filho & Okmyung Bin, 2005. "Estimation of hedonic price functions via additive nonparametric regression," Empirical Economics, Springer, vol. 30(1), pages 93-114, January.
    5. Stevenson, Simon, 2004. "New empirical evidence on heteroscedasticity in hedonic housing models," Journal of Housing Economics, Elsevier, vol. 13(2), pages 136-153, June.
    6. James Frew & G. Donald Jud, 2003. "Estimating the Value of Apartment Buildings," Journal of Real Estate Research, American Real Estate Society, vol. 25(1), pages 77-86.
    7. Marvin L. Wolverton & Jimmy Senteza, 2000. "Hedonic Estimates of Regional Constant Quality House Prices," Journal of Real Estate Research, American Real Estate Society, vol. 19(3), pages 235-253.
    8. Charles A E Goodhart, 2005. "Beyond current policy frameworks," BIS Working Papers 189, Bank for International Settlements.
    9. Gang-Zhi Fan & Seow Eng Ong & Hian Chye Koh, 2006. "Determinants of House Price: A Decision Tree Approach," Urban Studies, Urban Studies Journal Limited, vol. 43(12), pages 2301-2315, November.
    10. Helen X.H. Bao & Alan T.K. Wan, 2004. "On the Use of Spline Smoothing in Estimating Hedonic Housing Price Models: Empirical Evidence Using Hong Kong Data," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 32(3), pages 487-507, September.
    11. Elaine M. Worzala & Margarita Lenk & Ana Silva, 1995. "An Exploration of Neural Networks and Its Application to Real Estate Valuation," Journal of Real Estate Research, American Real Estate Society, vol. 10(2), pages 185-202.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuan-Lun Pan & Hsiao Jung Teng & Shih-Yuan Lin & Yu En Cheng, 2021. "An Empirical Method for Decomposing the Contributions of Land and Building Values to Housing Value," International Real Estate Review, Global Social Science Institute, vol. 24(3), pages 385-403.
    2. Jasmina Ćetković & Slobodan Lakić & Marijana Lazarevska & Miloš Žarković & Saša Vujošević & Jelena Cvijović & Mladen Gogić, 2018. "Assessment of the Real Estate Market Value in the European Market by Artificial Neural Networks Application," Complexity, Hindawi, vol. 2018, pages 1-10, January.
    3. Muktar Babatunde Wahab & Wasiu Ayobami Durosinmi & Matthew Mamman & Dodo Usman Zakari & Adetoye Sulaiman Adepoju, 2021. "Macroeconomic Dynamics in Real Estate Market amid Covid-19 Pandemic in Abuja, Nigeria," AfRES 2021-002, African Real Estate Society (AfRES).
    4. Abul, Sadeq & Al-Kandari, Ahmad M., 2020. "Real Estate Market and Macroeconomic Factors in Kuwait: An ARDL Approach," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 73(3), pages 405-434.
    5. Tomal Mateusz, 2019. "The Impact of Macro Factors on Apartment Prices in Polish Counties: A Two-Stage Quantile Spatial Regression Approach," Real Estate Management and Valuation, Sciendo, vol. 27(4), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antipov, Evgeny & Pokryshevskaya, Elena, 2010. "Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics," MPRA Paper 27645, University Library of Munich, Germany.
    2. Manuel Landajo & Celia Bilbao & Amelia Bilbao, 2012. "Nonparametric neural network modeling of hedonic prices in the housing market," Empirical Economics, Springer, vol. 42(3), pages 987-1009, June.
    3. Elena B. Pokryshevskaya & Evgeny A. Antipov, 2011. "Applying a CART-based approach for the diagnostics of mass appraisal models," Economics Bulletin, AccessEcon, vol. 31(3), pages 2521-2528.
    4. Núñez Tabales, Julia M. & Caridad y Ocerin, José María & Rey Carmona, Francisco J., 2013. "Artificial Neural Networks for Predicting Real Estate Prices || Redes neuronales artificiales para la predicción de precios inmobiliarios," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 15(1), pages 29-44, June.
    5. Jose Torres-Pruñonosa & Pablo García-Estévez & Josep Maria Raya & Camilo Prado-Román, 2022. "How on Earth Did Spanish Banking Sell the Housing Stock?," SAGE Open, , vol. 12(1), pages 21582440221, March.
    6. Camilo Serrano & Martin Hoesli, 2010. "Are Securitized Real Estate Returns more Predictable than Stock Returns?," The Journal of Real Estate Finance and Economics, Springer, vol. 41(2), pages 170-192, August.
    7. Mahdieh Yazdani & Maziar Raissi, 2023. "Real Estate Property Valuation using Self-Supervised Vision Transformers," Papers 2302.00117, arXiv.org.
    8. Jos魍ar𨁍ontero-Lorenzo & Beatriz Larraz-Iribas, 2012. "Space-time approach to commercial property prices valuation," Applied Economics, Taylor & Francis Journals, vol. 44(28), pages 3705-3715, October.
    9. Hyunsoo Kim & Youngwoo Kwon & Yeol Choi, 2020. "Assessing the Impact of Public Rental Housing on the Housing Prices in Proximity: Based on the Regional and Local Level of Price Prediction Models Using Long Short-Term Memory (LSTM)," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    10. Mehmet Emin Tabar & Aziz Sisman & Yasemin Sisman, 2023. "A Real Estate Appraisal Model with Artificial Neural Networks and Fuzzy Logic: A Local Case Study of Samsun City," International Real Estate Review, Global Social Science Institute, vol. 26(4), pages 569-585.
    11. Jose Torres-Pruñonosa & Pablo García-Estévez & Camilo Prado-Román, 2021. "Artificial Neural Network, Quantile and Semi-Log Regression Modelling of Mass Appraisal in Housing," Mathematics, MDPI, vol. 9(7), pages 1-16, April.
    12. Kagie, M. & van Wezel, M.C., 2006. "Hedonic price models and indices based on boosting applied to the Dutch housing market," Econometric Institute Research Papers EI 2006-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. William Cheung & Lewen Guo & Yuichiro Kawaguchi, 2021. "Automated valuation model for residential rental markets: evidence from Japan," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-34, December.
    14. Gao, Qishuo & Shi, Vivien & Pettit, Christopher & Han, Hoon, 2022. "Property valuation using machine learning algorithms on statistical areas in Greater Sydney, Australia," Land Use Policy, Elsevier, vol. 123(C).
    15. repec:ire:issued:v:26:n:04:2023:p:565-581 is not listed on IDEAS
    16. Mahdieh Yazdani, 2021. "House Price Determinants and Market Segmentation in Boulder, Colorado: A Hedonic Price Approach," Papers 2108.02442, arXiv.org.
    17. Martijn Kagie & Michiel Van Wezel, 2007. "Hedonic price models and indices based on boosting applied to the Dutch housing market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 85-106, July.
    18. Ansgar Belke & Jonas Keil, 2018. "Fundamental Determinants of Real Estate Prices: A Panel Study of German Regions," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 24(1), pages 25-45, February.
    19. Süreyya Özöğür Akyüz & Birsen Eygi Erdogan & Özlem Yıldız & Pınar Karadayı Ataş, 2023. "A Novel Hybrid House Price Prediction Model," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1215-1232, October.
    20. Jun Kang & Hyun Jun Lee & Seung Hwan Jeong & Hee Soo Lee & Kyong Joo Oh, 2020. "Developing a Forecasting Model for Real Estate Auction Prices Using Artificial Intelligence," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    21. Vladimir Vargas-Calder'on & Jorge E. Camargo, 2020. "Towards robust and speculation-reduction real estate pricing models based on a data-driven strategy," Papers 2012.09115, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:foeste:v:12:y:2012:i:2:p:103-125:n:11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.