A Review of Approaches for the Detection and Treatment of Outliers in Processing Wind Turbine and Wind Farm Measurements
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mangalova, E. & Agafonov, E., 2014. "Wind power forecasting using the k-nearest neighbors algorithm," International Journal of Forecasting, Elsevier, vol. 30(2), pages 402-406.
- Taslimi-Renani, Ehsan & Modiri-Delshad, Mostafa & Elias, Mohamad Fathi Mohamad & Rahim, Nasrudin Abd., 2016. "Development of an enhanced parametric model for wind turbine power curve," Applied Energy, Elsevier, vol. 177(C), pages 544-552.
- Robert G. Brown & Richard F. Meyer, 1961. "The Fundamental Theorem of Exponential Smoothing," Operations Research, INFORMS, vol. 9(5), pages 673-685, October.
- Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
- Zhou, Yong & Wan, Alan T.K. & Xie, Shangyu & Wang, Xiaojing, 2010. "Wavelet analysis of change-points in a non-parametric regression with heteroscedastic variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 183-201, November.
- King, Gary & Honaker, James & Joseph, Anne & Scheve, Kenneth, 2001. "Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation," American Political Science Review, Cambridge University Press, vol. 95(1), pages 49-69, March.
- Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "Models for monitoring wind farm power," Renewable Energy, Elsevier, vol. 34(3), pages 583-590.
- Lydia, M. & Kumar, S. Suresh & Selvakumar, A. Immanuel & Prem Kumar, G. Edwin, 2014. "A comprehensive review on wind turbine power curve modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 452-460.
- Pierre Pinson & Henrik Madsen, 2012. "Adaptive modelling and forecasting of offshore wind power fluctuations with Markov‐switching autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(4), pages 281-313, July.
- Ouyang, Tinghui & Kusiak, Andrew & He, Yusen, 2017. "Modeling wind-turbine power curve: A data partitioning and mining approach," Renewable Energy, Elsevier, vol. 102(PA), pages 1-8.
- Cambron, P. & Lepvrier, R. & Masson, C. & Tahan, A. & Pelletier, F., 2016. "Power curve monitoring using weighted moving average control charts," Renewable Energy, Elsevier, vol. 94(C), pages 126-135.
- Ye, Lin & Zhao, Yongning & Zeng, Cheng & Zhang, Cihang, 2017. "Short-term wind power prediction based on spatial model," Renewable Energy, Elsevier, vol. 101(C), pages 1067-1074.
- Yang, Zhiling & Liu, Yongqian & Li, Chengrong, 2011. "Interpolation of missing wind data based on ANFIS," Renewable Energy, Elsevier, vol. 36(3), pages 993-998.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
- Jong-Il Park & Chang-Hyun Park, 2022. "Harmonic Contribution Assessment Based on the Random Sample Consensus and Recursive Least Square Methods," Energies, MDPI, vol. 15(17), pages 1-18, September.
- Shahram Hanifi & Saeid Lotfian & Hossein Zare-Behtash & Andrea Cammarano, 2022. "Offshore Wind Power Forecasting—A New Hyperparameter Optimisation Algorithm for Deep Learning Models," Energies, MDPI, vol. 15(19), pages 1-21, September.
- Luis Alfonso Menéndez-García & Paulino José García-Nieto & Esperanza García-Gonzalo & Fernando Sánchez Lasheras & Laura Álvarez-de-Prado & Antonio Bernardo-Sánchez, 2023. "Method for the Detection of Functional Outliers Applied to Quality Monitoring Samples in the Vicinity of El Musel Seaport in the Metropolitan Area of Gijón (Northern Spain)," Mathematics, MDPI, vol. 11(12), pages 1-23, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.
- Yan, Jie & Zhang, Hao & Liu, Yongqian & Han, Shuang & Li, Li, 2019. "Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling," Applied Energy, Elsevier, vol. 239(C), pages 1356-1370.
- Miguel Á. Rodríguez-López & Emilio Cerdá & Pablo del Rio, 2020. "Modeling Wind-Turbine Power Curves: Effects of Environmental Temperature on Wind Energy Generation," Energies, MDPI, vol. 13(18), pages 1-21, September.
- Hu, Yang & Xi, Yunhua & Pan, Chenyang & Li, Gengda & Chen, Baowei, 2020. "Daily condition monitoring of grid-connected wind turbine via high-fidelity power curve and its comprehensive rating," Renewable Energy, Elsevier, vol. 146(C), pages 2095-2111.
- Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
- Han, Shuang & Qiao, Yanhui & Yan, Ping & Yan, Jie & Liu, Yongqian & Li, Li, 2020. "Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles," Renewable Energy, Elsevier, vol. 157(C), pages 190-203.
- Wang, Yun & Duan, Xiaocong & Zou, Runmin & Zhang, Fan & Li, Yifen & Hu, Qinghua, 2023. "A novel data-driven deep learning approach for wind turbine power curve modeling," Energy, Elsevier, vol. 270(C).
- Ouyang, Tinghui & Kusiak, Andrew & He, Yusen, 2017. "Modeling wind-turbine power curve: A data partitioning and mining approach," Renewable Energy, Elsevier, vol. 102(PA), pages 1-8.
- Taslimi-Renani, Ehsan & Modiri-Delshad, Mostafa & Elias, Mohamad Fathi Mohamad & Rahim, Nasrudin Abd., 2016. "Development of an enhanced parametric model for wind turbine power curve," Applied Energy, Elsevier, vol. 177(C), pages 544-552.
- Ouyang, Tinghui & Zha, Xiaoming & Qin, Liang & He, Yusen & Tang, Zhenhao, 2019. "Prediction of wind power ramp events based on residual correction," Renewable Energy, Elsevier, vol. 136(C), pages 781-792.
- Rogers, T.J. & Gardner, P. & Dervilis, N. & Worden, K. & Maguire, A.E. & Papatheou, E. & Cross, E.J., 2020. "Probabilistic modelling of wind turbine power curves with application of heteroscedastic Gaussian Process regression," Renewable Energy, Elsevier, vol. 148(C), pages 1124-1136.
- Morshedizadeh, Majid & Kordestani, Mojtaba & Carriveau, Rupp & Ting, David S.-K. & Saif, Mehrdad, 2017. "Application of imputation techniques and Adaptive Neuro-Fuzzy Inference System to predict wind turbine power production," Energy, Elsevier, vol. 138(C), pages 394-404.
- Nasery, Praanjal & Aziz Ezzat, Ahmed, 2023. "Yaw-adjusted wind power curve modeling: A local regression approach," Renewable Energy, Elsevier, vol. 202(C), pages 1368-1376.
- Ravi Pandit & David Infield, 2018. "Gaussian Process Operational Curves for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 11(7), pages 1-20, June.
- Aziz, Usama & Charbonnier, Sylvie & Bérenguer, Christophe & Lebranchu, Alexis & Prevost, Frederic, 2021. "Critical comparison of power-based wind turbine fault-detection methods using a realistic framework for SCADA data simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Jurasz, Jakub & Mikulik, Jerzy & Krzywda, Magdalena & Ciapała, Bartłomiej & Janowski, Mirosław, 2018. "Integrating a wind- and solar-powered hybrid to the power system by coupling it with a hydroelectric power station with pumping installation," Energy, Elsevier, vol. 144(C), pages 549-563.
- Chen, Jincheng & Wang, Feng & Stelson, Kim A., 2018. "A mathematical approach to minimizing the cost of energy for large utility wind turbines," Applied Energy, Elsevier, vol. 228(C), pages 1413-1422.
- Cambron, P. & Lepvrier, R. & Masson, C. & Tahan, A. & Pelletier, F., 2016. "Power curve monitoring using weighted moving average control charts," Renewable Energy, Elsevier, vol. 94(C), pages 126-135.
- Karamichailidou, Despina & Kaloutsa, Vasiliki & Alexandridis, Alex, 2021. "Wind turbine power curve modeling using radial basis function neural networks and tabu search," Renewable Energy, Elsevier, vol. 163(C), pages 2137-2152.
- Seo, Seokho & Oh, Si-Doek & Kwak, Ho-Young, 2019. "Wind turbine power curve modeling using maximum likelihood estimation method," Renewable Energy, Elsevier, vol. 136(C), pages 1164-1169.
More about this item
Keywords
measurement data; outlier; wind turbine; wind farm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4228-:d:399595. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.