IDEAS home Printed from https://ideas.repec.org/a/wly/apecpp/v44y2022i4p1955-1974.html
   My bibliography  Save this article

The R&D cost of climate mitigation in agriculture

Author

Listed:
  • Keith Fuglie
  • Srabashi Ray
  • Uris Lantz C. Baldos
  • Thomas W. Hertel

Abstract

Agriculture is responsible for 20%–25% of global emissions of greenhouse gases (GHG), which result from production practices and land use conversion. Supply‐side approaches for reducing emissions from agriculture rely on emissions‐saving technological change and environmental protection of carbon‐rich areas. This study investigates how productivity policies, in the form of higher agricultural research and development (R&D) spending, might affect GHG emissions from agriculture, and compares this to environmental policies that restrict agricultural land use or production practices that may cause environmental harm. Using simulations from a global economic model, we project outcomes in 2050 from a set of policy scenarios involving R&D and environmental policies, and combinations of the two. Outcomes of interest are net global GHG emissions, land use, agricultural production, food prices, the prevalence of food insecurity, and policy cost. We find that at the global level, more R&D spending to accelerate productivity growth reduces GHG emissions from land use change, but not as effectively as targeted environmental policies. However, accelerated productivity growth reduces the emissions intensity of agricultural production and, by lowering land rents, also reduces the cost of the environmental policy. Moreover, higher levels of productivity lower agricultural GHG emissions permanently, and by lowering global food prices, generally improve global food security. A policy scenario that is patterned after the EU Green Deal finds that policies that restrict agricultural factor inputs in order to reduce local environmental costs may, at the global level, increase agricultural GHG emissions and worsen food insecurity. These consequences could be avoided with higher EU R&D spending to accelerate agricultural productivity growth that is either factor neutral or biased toward saving production factors associated with negative environmental externalities.

Suggested Citation

  • Keith Fuglie & Srabashi Ray & Uris Lantz C. Baldos & Thomas W. Hertel, 2022. "The R&D cost of climate mitigation in agriculture," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(4), pages 1955-1974, December.
  • Handle: RePEc:wly:apecpp:v:44:y:2022:i:4:p:1955-1974
    DOI: 10.1002/aepp.13245
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/aepp.13245
    Download Restriction: no

    File URL: https://libkey.io/10.1002/aepp.13245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Uris Lantz C. Baldos & Keith O. Fuglie & Thomas W. Hertel, 2020. "The research cost of adapting agriculture to climate change: A global analysis to 2050," Agricultural Economics, International Association of Agricultural Economists, vol. 51(2), pages 207-220, March.
    2. Uris Lantz C. Baldos & Thomas W. Hertel, 2014. "Global food security in 2050: the role of agricultural productivity and climate change," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(4), pages 554-570, October.
    3. V. Eldon Ball & Jean‐Pierre Butault & Carlos San Juan & Ricardo Mora, 2010. "Productivity and international competitiveness of agriculture in the European Union and the United States," Agricultural Economics, International Association of Agricultural Economists, vol. 41(6), pages 611-627, November.
    4. Nelson B Villoria, 2019. "Technology Spillovers and Land Use Change: Empirical Evidence from Global Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(3), pages 870-893.
    5. Heisey, Paul W & Fuglie, Keith O., 2018. "Agricultural Research Investment and Policy Reform in High-Income Countries," Economic Research Report 276235, United States Department of Agriculture, Economic Research Service.
    6. Fuglie, Keith, 2015. "Accounting for growth in global agriculture," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 4(3), pages 1-34, December.
    7. Jayson Beckman & Maros Ivanic & Jeremy Jelliffe, 2022. "Market impacts of Farm to Fork: Reducing agricultural input usage," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(4), pages 1995-2013, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Peydayesh, 2024. "Sustainable Materials via the Assembly of Biopolymeric Nanobuilding Blocks Valorized from Agri-Food Waste," Sustainability, MDPI, vol. 16(3), pages 1-11, February.
    2. Beckman, Jayson & Dong, Fengxia & Ivanic, Maros & Jägermeyr, Jonas & Villoria, Nelson, 2024. "Climate-Induced Yield Changes and TFP: How Much R&D Is Necessary to Maintain the Food Supply?," Economic Research Report 344129, United States Department of Agriculture, Economic Research Service.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hertel, By Thomas W. & Baldos, Uris L.C. & Fuglie, Keith O., 2020. "Trade in technology: A potential solution to the food security challenges of the 21st century," European Economic Review, Elsevier, vol. 127(C).
    2. Sanzidur Rahman & Asif Reza Anik & Jaba Rani Sarker, 2022. "Climate, Environment and Socio-Economic Drivers of Global Agricultural Productivity Growth," Land, MDPI, vol. 11(4), pages 1-17, April.
    3. Edoardo Baldoni & Roberto Esposti, 2021. "Agricultural Productivity in Space: an Econometric Assessment Based on Farm‐Level Data," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1525-1544, August.
    4. Kubitza, Christoph & Dib, Jonida Bou & Kopp, Thomas & Krishna, Vijesh V. & Nuryartono, Nunung & Qaim, Matin & Romero, Miriam & Klasen, Stephan, 2019. "Labor savings in agriculture and inequality at different spatial scales: The expansion of oil palm in Indonesia," EFForTS Discussion Paper Series 26, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    5. Sheng, Yu & Xu, Xinpeng, 2019. "The productivity impact of climate change: Evidence from Australia's Millennium drought," Economic Modelling, Elsevier, vol. 76(C), pages 182-191.
    6. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    7. Davide Dell’Unto & Gabriele Dono & Raffaele Cortignani, 2023. "Impacts of Environmental Targets on the Livestock Sector: An Assessment Tool Applied to Italy," Agriculture, MDPI, vol. 13(4), pages 1-15, March.
    8. Katsushi S. Imai & Raghav Gaiha & Fabrizio Bresciani, 2016. "Dynamics of Rural Transformation and Poverty and Inequality in Asia and the Pacific," Discussion Paper Series DP2016-30, Research Institute for Economics & Business Administration, Kobe University, revised Feb 2019.
    9. Bernhard Dalheimer & Christoph Kubitza & Bernhard Brümmer, 2022. "Technical efficiency and farmland expansion: Evidence from oil palm smallholders in Indonesia," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1364-1387, August.
    10. Liu, Jing & Hertel, Thomas & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz & Grogan, Danielle & Frolking, Steve, 2016. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use," Conference papers 332691, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Lajos Baráth & Imre Fertő, 2017. "Productivity and Convergence in European Agriculture," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(1), pages 228-248, February.
    12. Kleinhanss, Werner, 2013. "PR - Development Of Productivity Of Dairy And Pig Farms In Germany," 19th Congress, Warsaw, Poland, 2013 345676, International Farm Management Association.
    13. Nasir Munir & Adiqa Kiani & Asia Baig, 2016. "Climate Change and Food Security in Pakistan: A Time Series Analysis," Global Economics Review, Humanity Only, vol. 1(1), pages 47-55, December.
    14. Rob Vos, 2018. "Agricultural and rural transformations in Asian development," WIDER Working Paper Series 87, World Institute for Development Economic Research (UNU-WIDER).
    15. Ramsey, A. Ford & Tack, Jesse B. & Balota, Maria, 2021. "Double or Nothing: Impacts of Warming on Crop Quantity, Quality, and Revenue," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 47(1), January.
    16. Maros Ivanic & Jayson Beckman & Noe Nava, 2023. "Estimation of the Value-Added/Intermediate Input Substitution Elasticities Consistent with the GTAP Data," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 8(2), pages 134-158, December.
    17. Lan Anh Tong & Mehmet Ali Ulubaşoğlu & Cahit Guven, 2022. "Growing more Rice with less water: the System of Rice Intensification and water productivity in Vietnam," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(3), pages 581-611, July.
    18. Kym Anderson, 2021. "Food policy in a more volatile climate and trade environment," Departmental Working Papers 2021-25, The Australian National University, Arndt-Corden Department of Economics.
    19. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    20. Mohammed Al-Naeem & M M Hafizur Rahman & Anuradha Banerjee & Abu Sufian, 2023. "Support Vector Machine-Based Energy Efficient Management of UAV Locations for Aerial Monitoring of Crops over Large Agriculture Lands," Sustainability, MDPI, vol. 15(8), pages 1-17, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apecpp:v:44:y:2022:i:4:p:1955-1974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2040-5804 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.