IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1092-d215925.html
   My bibliography  Save this article

A Review of the Energy Efficiency Improvement in DC Railway Systems

Author

Listed:
  • Mihaela Popescu

    (Department of Electromechanics Environment and Applied Informatics, Faculty of Electrical Engineering, University of Craiova, 200585 Craiova, Romania)

  • Alexandru Bitoleanu

    (Department of Electromechanics Environment and Applied Informatics, Faculty of Electrical Engineering, University of Craiova, 200585 Craiova, Romania)

Abstract

This study is focused on the topical issue of increasing the energy efficiency in DC railway systems, in the context of global concerns for reducing the CO 2 emissions by minimizing the energy consumption and energy loss. The main achievements in this complex issue are synthesized and discussed in a comprehensive review, emphasizing the implementation and application of the existing solutions on concrete case studies. Thus, all specific subtopics related to the energy efficiency are covered, starting with power quality conditioning and continuing with the recovery of braking energy, of which a large part is lost in the classic DC-traction substations. The solutions of onboard and wayside storage systems for the braking energy are discussed and compared, and practical examples are given. Then, the achievements in transforming the existing DC-traction substations in reversible substations with capabilities of power quality improvement are systematically reviewed by illustrating the main results of recent research on this topic. They include the equipment available on the market and solutions validated through implementations on experimental models. Through the results of this extensive review, useful reference and support are provided for the research and development focused on energy efficient traction systems.

Suggested Citation

  • Mihaela Popescu & Alexandru Bitoleanu, 2019. "A Review of the Energy Efficiency Improvement in DC Railway Systems," Energies, MDPI, vol. 12(6), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1092-:d:215925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1092/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1092/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diego Iannuzzi & Enrico Pagano & Pietro Tricoli, 2013. "The Use of Energy Storage Systems for Supporting the Voltage Needs of Urban and Suburban Railway Contact Lines," Energies, MDPI, vol. 6(4), pages 1-19, March.
    2. Shuai Su & Tao Tang & Yihui Wang, 2016. "Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model," Energies, MDPI, vol. 9(2), pages 1-19, February.
    3. Gang Zhang & Zhongbei Tian & Huiqing Du & Zhigang Liu, 2018. "A Novel Hybrid DC Traction Power Supply System Integrating PV and Reversible Converters," Energies, MDPI, vol. 11(7), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    2. Piotr Gołębiowski & Marianna Jacyna & Andrzej Stańczak, 2021. "The Assessment of Energy Efficiency versus Planning of Rail Freight Traffic: A Case Study on the Example of Poland," Energies, MDPI, vol. 14(18), pages 1-18, September.
    3. Morris Brenna & Vittorio Bucci & Maria Carmen Falvo & Federica Foiadelli & Alessandro Ruvio & Giorgio Sulligoi & Andrea Vicenzutti, 2020. "A Review on Energy Efficiency in Three Transportation Sectors: Railways, Electrical Vehicles and Marine," Energies, MDPI, vol. 13(9), pages 1-19, May.
    4. Katarina Vranešić & Sahil Bhagat & Andrea Mariscotti & Robert Vail, 2023. "Measures and Prescriptions to Reduce Stray Current in the Design of New Track Corridors," Energies, MDPI, vol. 16(17), pages 1-25, August.
    5. Chi-Myeong Yun & Gyu-Jung Cho & Hyungchul Kim & Hosung Jung, 2022. "A Study on the Train Brake Position-Based Control Method for Regenerative Inverters," Energies, MDPI, vol. 15(18), pages 1-13, September.
    6. Zbigniew Olczykowski & Jacek Kozyra, 2022. "Propagation of Disturbances Generated by DC Electric Traction," Energies, MDPI, vol. 15(18), pages 1-22, September.
    7. Mihaela Popescu, 2022. "Energy Efficiency in Electric Transportation Systems," Energies, MDPI, vol. 15(21), pages 1-5, November.
    8. Sahil Bhagat & Jacopo Bongiorno & Andrea Mariscotti, 2023. "Influence of Infrastructure and Operating Conditions on Energy Performance of DC Transit Systems," Energies, MDPI, vol. 16(10), pages 1-26, May.
    9. Hamed Jafari Kaleybar & Morris Brenna & Federica Foiadelli & Seyed Saeed Fazel & Dario Zaninelli, 2020. "Power Quality Phenomena in Electric Railway Power Supply Systems: An Exhaustive Framework and Classification," Energies, MDPI, vol. 13(24), pages 1-35, December.
    10. Giuliano Cipolletta & Antonio Delle Femine & Daniele Gallo & Mario Luiso & Carmine Landi, 2021. "Design of a Stationary Energy Recovery System in Rail Transport," Energies, MDPI, vol. 14(9), pages 1-16, April.
    11. Szymon Haładyn, 2021. "The Problem of Train Scheduling in the Context of the Load on the Power Supply Infrastructure. A Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.
    12. Regina Lamedica & Alessandro Ruvio & Laura Palagi & Nicola Mortelliti, 2020. "Optimal Siting and Sizing of Wayside Energy Storage Systems in a D.C. Railway Line," Energies, MDPI, vol. 13(23), pages 1-22, November.
    13. Aleksandra Kuzior & Marek Staszek, 2021. "Energy Management in the Railway Industry: A Case Study of Rail Freight Carrier in Poland," Energies, MDPI, vol. 14(21), pages 1-21, October.
    14. Nursaid Polater & Pietro Tricoli, 2022. "Technical Review of Traction Drive Systems for Light Railways," Energies, MDPI, vol. 15(9), pages 1-26, April.
    15. Franciszek Restel & Szymon Mateusz Haładyn, 2022. "The Railway Timetable Evaluation Method in Terms of Operational Robustness against Overloads of the Power Supply System," Energies, MDPI, vol. 15(17), pages 1-17, September.
    16. Artur Kierzkowski & Szymon Haładyn, 2022. "Method for Reconfiguring Train Schedules Taking into Account the Global Reduction of Railway Energy Consumption," Energies, MDPI, vol. 15(5), pages 1-18, March.
    17. Mihaela Popescu & Alexandru Bitoleanu & Constantin Vlad Suru & Mihaita Linca & Gheorghe Eugen Subtirelu, 2020. "Adaptive Control of DC Voltage in Three-Phase Three-Wire Shunt Active Power Filters Systems," Energies, MDPI, vol. 13(12), pages 1-24, June.
    18. Ivan Radaš & Ivan Župan & Viktor Šunde & Željko Ban, 2021. "Route Profile Dependent Tram Regenerative Braking Algorithm with Reduced Impact on the Supply Network," Energies, MDPI, vol. 14(9), pages 1-22, April.
    19. Zhongbei Tian & Ning Zhao & Stuart Hillmansen & Shuai Su & Chenglin Wen, 2020. "Traction Power Substation Load Analysis with Various Train Operating Styles and Substation Fault Modes," Energies, MDPI, vol. 13(11), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Menicanti & Marco di Benedetto & Davide Marinelli & Fabio Crescimbini, 2022. "Recovery of Trains’ Braking Energy in a Railway Micro-Grid Devoted to Train plus Electric Vehicle Integrated Mobility," Energies, MDPI, vol. 15(4), pages 1-25, February.
    2. Adrián Fernández-Rodríguez & Antonio Fernández-Cardador & Asunción P. Cucala & Maria Carmen Falvo, 2019. "Energy Efficiency and Integration of Urban Electrical Transport Systems: EVs and Metro-Trains of Two Real European Lines," Energies, MDPI, vol. 12(3), pages 1-20, January.
    3. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    4. Hammad Alnuman & Daniel Gladwin & Martin Foster, 2018. "Electrical Modelling of a DC Railway System with Multiple Trains," Energies, MDPI, vol. 11(11), pages 1-20, November.
    5. Luan, Xiaojie & Wang, Yihui & De Schutter, Bart & Meng, Lingyun & Lodewijks, Gabriel & Corman, Francesco, 2018. "Integration of real-time traffic management and train control for rail networks - Part 2: Extensions towards energy-efficient train operations," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 72-94.
    6. Petru Valentin Radu & Miroslaw Lewandowski & Adam Szelag, 2020. "On-Board and Wayside Energy Storage Devices Applications in Urban Transport Systems—Case Study Analysis for Power Applications," Energies, MDPI, vol. 13(8), pages 1-29, April.
    7. Huan Xia & Huaixin Chen & Zhongping Yang & Fei Lin & Bin Wang, 2015. "Optimal Energy Management, Location and Size for Stationary Energy Storage System in a Metro Line Based on Genetic Algorithm," Energies, MDPI, vol. 8(10), pages 1-23, October.
    8. Arkadiusz Kampczyk & Wojciech Gamon & Katarzyna Gawlak, 2023. "Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics," Energies, MDPI, vol. 16(6), pages 1-23, March.
    9. Marcin Szott & Marcin Jarnut & Jacek Kaniewski & Łukasz Pilimon & Szymon Wermiński, 2021. "Fault-Tolerant Control in a Peak-Power Reduction System of a Traction Substation with Multi-String Battery Energy Storage System," Energies, MDPI, vol. 14(15), pages 1-23, July.
    10. Mikołaj Bartłomiejczyk & Leszek Jarzebowicz & Jiří Kohout, 2022. "Compensation of Voltage Drops in Trolleybus Supply System Using Battery-Based Buffer Station," Energies, MDPI, vol. 15(5), pages 1-15, February.
    11. Wang, Xuekai & Tang, Tao & Su, Shuai & Yin, Jiateng & Gao, Ziyou & Lv, Nan, 2021. "An integrated energy-efficient train operation approach based on the space-time-speed network methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    12. Sahil Bhagat & Jacopo Bongiorno & Andrea Mariscotti, 2023. "Influence of Infrastructure and Operating Conditions on Energy Performance of DC Transit Systems," Energies, MDPI, vol. 16(10), pages 1-26, May.
    13. Zhongbei Tian & Ning Zhao & Stuart Hillmansen & Shuai Su & Chenglin Wen, 2020. "Traction Power Substation Load Analysis with Various Train Operating Styles and Substation Fault Modes," Energies, MDPI, vol. 13(11), pages 1-18, June.
    14. Heng Li & Jun Peng & Weirong Liu & Zhiwu Huang, 2015. "Stationary Charging Station Design for Sustainable Urban Rail Systems: A Case Study at Zhuzhou Electric Locomotive Co., China," Sustainability, MDPI, vol. 7(1), pages 1-17, January.
    15. Zhongping Yang & Zhihong Yang & Huan Xia & Fei Lin & Feiqin Zhu, 2017. "Supercapacitor State Based Control and Optimization for Multiple Energy Storage Devices Considering Current Balance in Urban Rail Transit," Energies, MDPI, vol. 10(4), pages 1-19, April.
    16. Meishner, Fabian & Ünlübayir, Cem & Sauer, Dirk Uwe, 2023. "Model-based investigation of an uncontrolled LTO wayside energy storage system in a 750 V tram grid," Applied Energy, Elsevier, vol. 331(C).
    17. Huang, Yu & Zhou, Wenliang & Qin, Jin & Deng, Lianbo, 2023. "Optimization of energy-efficiency train schedule considering passenger demand and rolling stock circulation plan of subway line," Energy, Elsevier, vol. 275(C).
    18. Nursaid Polater & Pietro Tricoli, 2022. "Technical Review of Traction Drive Systems for Light Railways," Energies, MDPI, vol. 15(9), pages 1-26, April.
    19. Alejandro Cunillera & Adrián Fernández-Rodríguez & Asunción P. Cucala & Antonio Fernández-Cardador & Maria Carmen Falvo, 2020. "Assessment of the Worthwhileness of Efficient Driving in Railway Systems with High-Receptivity Power Supplies," Energies, MDPI, vol. 13(7), pages 1-24, April.
    20. Bin Wang & Zhongping Yang & Fei Lin & Wei Zhao, 2014. "An Improved Genetic Algorithm for Optimal Stationary Energy Storage System Locating and Sizing," Energies, MDPI, vol. 7(10), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1092-:d:215925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.