IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6252-d1227453.html
   My bibliography  Save this article

Measures and Prescriptions to Reduce Stray Current in the Design of New Track Corridors

Author

Listed:
  • Katarina Vranešić

    (Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb, Croatia)

  • Sahil Bhagat

    (DITEN, Department of Electrical, Electronic and Telecommunications Engineering, and Naval Architecture, University of Genoa, 16145 Genoa, Italy)

  • Andrea Mariscotti

    (DITEN, Department of Electrical, Electronic and Telecommunications Engineering, and Naval Architecture, University of Genoa, 16145 Genoa, Italy)

  • Robert Vail

    (AECOM, Atlanta, GA 30309, USA)

Abstract

Stray currents can cause very rapid degradation and material loss at the points where the current leaves the metal and enters the electrolyte. Nowadays, many resources are invested in the protection of jeopardized structures, such as buried pipelines, from stray current corrosion. This paper describes the measures that need to be considered in the design and construction of track structures to ensure high rail-to-ground resistance and consequently reduce stray currents. The main conclusions from existing guidelines and standards for reducing and controlling stray currents that are applied by various track operators are presented in the paper. Rail-to-ground resistance in different types of tracks structures and rail fastening systems is analyzed, and the optimal type of the track and type of the fastening system is defined. The grounding schemes used on the tracks and their influence on stray current values are described, as well as the influence of traction power stations (TPS) and rail cross bonding on stray current. Since it is not necessary to apply all the measures described to the same track structure, the paper gives recommendations on which measures to apply when building tracks with continuously fastened rails and which to apply when building tracks with discretely supported and fastened rails.

Suggested Citation

  • Katarina Vranešić & Sahil Bhagat & Andrea Mariscotti & Robert Vail, 2023. "Measures and Prescriptions to Reduce Stray Current in the Design of New Track Corridors," Energies, MDPI, vol. 16(17), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6252-:d:1227453
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6252/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6252/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guifu Du & Dongliang Zhang & Guoxin Li & Chonglin Wang & Jianhua Liu, 2016. "Evaluation of Rail Potential Based on Power Distribution in DC Traction Power Systems," Energies, MDPI, vol. 9(9), pages 1-20, September.
    2. Mikołaj Bartłomiejczyk & Leszek Jarzebowicz & Jiří Kohout, 2022. "Compensation of Voltage Drops in Trolleybus Supply System Using Battery-Based Buffer Station," Energies, MDPI, vol. 15(5), pages 1-15, February.
    3. Hammad Alnuman & Daniel Gladwin & Martin Foster, 2018. "Electrical Modelling of a DC Railway System with Multiple Trains," Energies, MDPI, vol. 11(11), pages 1-20, November.
    4. Mihaela Popescu & Alexandru Bitoleanu, 2019. "A Review of the Energy Efficiency Improvement in DC Railway Systems," Energies, MDPI, vol. 12(6), pages 1-25, March.
    5. Katarina Vranešić & Ivo Haladin & Stjepan Lakušić & Krešimir Burnać, 2023. "Convenient Procedure for Measuring the Electrical Resistance of Fastening Systems in Urban Railway Tracks," Energies, MDPI, vol. 16(4), pages 1-16, February.
    6. Sahil Bhagat & Jacopo Bongiorno & Andrea Mariscotti, 2023. "Influence of Infrastructure and Operating Conditions on Energy Performance of DC Transit Systems," Energies, MDPI, vol. 16(10), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahil Bhagat & Jacopo Bongiorno & Andrea Mariscotti, 2023. "Influence of Infrastructure and Operating Conditions on Energy Performance of DC Transit Systems," Energies, MDPI, vol. 16(10), pages 1-26, May.
    2. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    3. Chengtao Wang & Wei Li & Yuqiao Wang & Shaoyi Xu & Kunpeng Li, 2019. "Evaluation Model for the Scope of DC Interference Generated by Stray Currents in Light Rail Systems," Energies, MDPI, vol. 12(4), pages 1-17, February.
    4. Andrea Mariscotti, 2024. "Estimation of Railway Line Impedance at Low Frequency Using Onboard Measurements Only," Energies, MDPI, vol. 17(15), pages 1-23, July.
    5. Hao Zhang & Jian Zhang & Linjie Zhou & Peng Xiong & Zhuofan Zhao, 2023. "Hierarchical Operation Optimization for Regenerative Braking Energy Utilizing in Urban Rail Traction Power Supply System," Energies, MDPI, vol. 16(21), pages 1-20, October.
    6. Aleksandra Kuzior & Marek Staszek, 2021. "Energy Management in the Railway Industry: A Case Study of Rail Freight Carrier in Poland," Energies, MDPI, vol. 14(21), pages 1-21, October.
    7. Petru Valentin Radu & Miroslaw Lewandowski & Adam Szelag, 2020. "On-Board and Wayside Energy Storage Devices Applications in Urban Transport Systems—Case Study Analysis for Power Applications," Energies, MDPI, vol. 13(8), pages 1-29, April.
    8. Regina Lamedica & Alessandro Ruvio & Laura Palagi & Nicola Mortelliti, 2020. "Optimal Siting and Sizing of Wayside Energy Storage Systems in a D.C. Railway Line," Energies, MDPI, vol. 13(23), pages 1-22, November.
    9. Efrain Mendez & Alexandro Ortiz & Pedro Ponce & Israel Macias & David Balderas & Arturo Molina, 2020. "Improved MPPT Algorithm for Photovoltaic Systems Based on the Earthquake Optimization Algorithm," Energies, MDPI, vol. 13(12), pages 1-24, June.
    10. Aleksander Jakubowski & Leszek Jarzebowicz & Mikołaj Bartłomiejczyk & Jacek Skibicki & Slawomir Judek & Andrzej Wilk & Mateusz Płonka, 2021. "Modeling of Electrified Transportation Systems Featuring Multiple Vehicles and Complex Power Supply Layout," Energies, MDPI, vol. 14(24), pages 1-20, December.
    11. Guifu Du & Dongliang Zhang & Guoxin Li & Yihua Hu & Yang Liu & Chonglin Wang & Jianhua Liu, 2017. "Maximum Safety Regenerative Power Tracking for DC Traction Power Systems," Energies, MDPI, vol. 10(2), pages 1-19, February.
    12. Agata Pomykala & Adam Szelag, 2022. "Reduction of Power Consumption and CO 2 Emissions as a Result of Putting into Service High-Speed Trains: Polish Case," Energies, MDPI, vol. 15(12), pages 1-24, June.
    13. Hamed Jafari Kaleybar & Morris Brenna & Federica Foiadelli & Seyed Saeed Fazel & Dario Zaninelli, 2020. "Power Quality Phenomena in Electric Railway Power Supply Systems: An Exhaustive Framework and Classification," Energies, MDPI, vol. 13(24), pages 1-35, December.
    14. Artur Kierzkowski & Szymon Haładyn, 2022. "Method for Reconfiguring Train Schedules Taking into Account the Global Reduction of Railway Energy Consumption," Energies, MDPI, vol. 15(5), pages 1-18, March.
    15. Zheng, Zhuang & Shafique, Muhammad & Luo, Xiaowei & Wang, Shengwei, 2024. "A systematic review towards integrative energy management of smart grids and urban energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Zhongbei Tian & Ning Zhao & Stuart Hillmansen & Shuai Su & Chenglin Wen, 2020. "Traction Power Substation Load Analysis with Various Train Operating Styles and Substation Fault Modes," Energies, MDPI, vol. 13(11), pages 1-18, June.
    17. Piotr Gołębiowski & Marianna Jacyna & Andrzej Stańczak, 2021. "The Assessment of Energy Efficiency versus Planning of Rail Freight Traffic: A Case Study on the Example of Poland," Energies, MDPI, vol. 14(18), pages 1-18, September.
    18. Meishner, Fabian & Ünlübayir, Cem & Sauer, Dirk Uwe, 2023. "Model-based investigation of an uncontrolled LTO wayside energy storage system in a 750 V tram grid," Applied Energy, Elsevier, vol. 331(C).
    19. Grzegorz Wieczorek & Krzysztof Bernacki & Zbigniew Rymarski & Wojciech Oliwa, 2021. "Gathering Energy of the Stray Currents in Electrified Railways Environment for Power Supply," Energies, MDPI, vol. 14(19), pages 1-19, September.
    20. Zbigniew Olczykowski & Jacek Kozyra, 2022. "Propagation of Disturbances Generated by DC Electric Traction," Energies, MDPI, vol. 15(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6252-:d:1227453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.