IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3147-d372909.html
   My bibliography  Save this article

Adaptive Control of DC Voltage in Three-Phase Three-Wire Shunt Active Power Filters Systems

Author

Listed:
  • Mihaela Popescu

    (Department of Electromechanics Environment and Applied Informatics, Faculty of Electrical Engineering, University of Craiova, 200585 Craiova, Romania)

  • Alexandru Bitoleanu

    (Department of Electromechanics Environment and Applied Informatics, Faculty of Electrical Engineering, University of Craiova, 200585 Craiova, Romania)

  • Constantin Vlad Suru

    (Department of Electromechanics Environment and Applied Informatics, Faculty of Electrical Engineering, University of Craiova, 200585 Craiova, Romania)

  • Mihaita Linca

    (Department of Electromechanics Environment and Applied Informatics, Faculty of Electrical Engineering, University of Craiova, 200585 Craiova, Romania)

  • Gheorghe Eugen Subtirelu

    (Department of Electromechanics Environment and Applied Informatics, Faculty of Electrical Engineering, University of Craiova, 200585 Craiova, Romania)

Abstract

This paper is focused on an adaptive controller for the direct current (DC) voltage in three-phase three-wire shunt active power filters systems. Although the controller structure of the proportional-integral (PI) type is determined off-line and does not change, the prescribed DC voltage and the controller parameters are calculated in an adaptation block, depending on the non-active power to be compensated. The adaptive control is based on the design expressions for the DC circuit of the shunt active power filter found by the authors, based on the detailed analysis of its operation, during the active filtering. The performances of the proposed adaptive control and its advantages compared to the classical control (where the prescribed DC voltage and the controller parameters are constant) were first determined on the virtual model of a laboratory setup. Then, the adaptive control was implemented on the dSPACE 1103 control board, which allowed the experimental determinations that prove and support the results obtained on the virtual model.

Suggested Citation

  • Mihaela Popescu & Alexandru Bitoleanu & Constantin Vlad Suru & Mihaita Linca & Gheorghe Eugen Subtirelu, 2020. "Adaptive Control of DC Voltage in Three-Phase Three-Wire Shunt Active Power Filters Systems," Energies, MDPI, vol. 13(12), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3147-:d:372909
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mihaela Popescu & Alexandru Bitoleanu, 2019. "A Review of the Energy Efficiency Improvement in DC Railway Systems," Energies, MDPI, vol. 12(6), pages 1-25, March.
    2. Yu Wang & Yuewu Wang & Si-Zhe Chen & Guidong Zhang & Yun Zhang, 2018. "A Simplified Minimum DC-Link Voltage Control Strategy for Shunt Active Power Filters," Energies, MDPI, vol. 11(9), pages 1-14, September.
    3. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "Control Algorithms of Shunt Active Power Filter for Harmonics Mitigation: A Review," Energies, MDPI, vol. 10(12), pages 1-29, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    2. Rui Hou & Jian Wu & Huihui Song & Yanbin Qu & Dianguo Xu, 2020. "Applying Directly Modified RDFT Method in Active Power Filter for the Power Quality Improvement of the Weak Power Grid," Energies, MDPI, vol. 13(18), pages 1-20, September.
    3. Agata Bielecka & Daniel Wojciechowski, 2021. "Stability Analysis of Shunt Active Power Filter with Predictive Closed-Loop Control of Supply Current," Energies, MDPI, vol. 14(8), pages 1-17, April.
    4. Gonzalo Abad & Alain Sanchez-Ruiz & Juan José Valera-García & Aritz Milikua, 2020. "Analysis and Design Guidelines for Current Control Loops of Grid-Connected Converters Based on Mathematical Models," Energies, MDPI, vol. 13(21), pages 1-47, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    2. K. Muthuvel & M. Vijayakumar, 2020. "Solar PV Sustained Quasi Z-Source Network-Based Unified Power Quality Conditioner for Enhancement of Power Quality," Energies, MDPI, vol. 13(10), pages 1-26, May.
    3. Aleksandra Kuzior & Marek Staszek, 2021. "Energy Management in the Railway Industry: A Case Study of Rail Freight Carrier in Poland," Energies, MDPI, vol. 14(21), pages 1-21, October.
    4. Abdelbasset Krama & Laid Zellouma & Boualaga Rabhi & Shady S. Refaat & Mansour Bouzidi, 2018. "Real-Time Implementation of High Performance Control Scheme for Grid-Tied PV System for Power Quality Enhancement Based on MPPC-SVM Optimized by PSO Algorithm," Energies, MDPI, vol. 11(12), pages 1-26, December.
    5. Regina Lamedica & Alessandro Ruvio & Laura Palagi & Nicola Mortelliti, 2020. "Optimal Siting and Sizing of Wayside Energy Storage Systems in a D.C. Railway Line," Energies, MDPI, vol. 13(23), pages 1-22, November.
    6. Jiahao Yang & Xiangguo Li & Juntao Fei, 2023. "Intelligent Global Fast Terminal Sliding Mode Control of Active Power Filter," Mathematics, MDPI, vol. 11(4), pages 1-23, February.
    7. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    8. Tanzim Meraj, Sheikh & Zaihar Yahaya, Nor & Hasan, Kamrul & Hossain Lipu, M.S. & Madurai Elavarasan, Rajvikram & Hussain, Aini & Hannan, M.A. & Muttaqi, Kashem M., 2022. "A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability," Applied Energy, Elsevier, vol. 312(C).
    9. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    10. Yu Wang & Yuewu Wang & Si-Zhe Chen & Guidong Zhang & Yun Zhang, 2018. "A Simplified Minimum DC-Link Voltage Control Strategy for Shunt Active Power Filters," Energies, MDPI, vol. 11(9), pages 1-14, September.
    11. Hamed Jafari Kaleybar & Morris Brenna & Federica Foiadelli & Seyed Saeed Fazel & Dario Zaninelli, 2020. "Power Quality Phenomena in Electric Railway Power Supply Systems: An Exhaustive Framework and Classification," Energies, MDPI, vol. 13(24), pages 1-35, December.
    12. Pingfan Xu & Xiaoyi Liu & Samson Shenglong Yu & Lisheng Pang, 2022. "ZVS Realization of H-Bridge Low-Voltage High-Current Converter via Phase-Shift and Saturable Control," Energies, MDPI, vol. 15(24), pages 1-11, December.
    13. Leonardo Rodrigues Limongi & Fabricio Bradaschia & Calebe Hermann de Oliveira Lima & Marcelo Cabral Cavalcanti, 2018. "Reactive Power and Current Harmonic Control Using a Dual Hybrid Power Filter for Unbalanced Non-Linear Loads," Energies, MDPI, vol. 11(6), pages 1-19, May.
    14. Sahil Bhagat & Jacopo Bongiorno & Andrea Mariscotti, 2023. "Influence of Infrastructure and Operating Conditions on Energy Performance of DC Transit Systems," Energies, MDPI, vol. 16(10), pages 1-26, May.
    15. Yuqi Bing & Daozhuo Jiang & Yiqiao Liang & Chongxi Jiang & Tianxiang He & Lei Yang & Pengfei Hu, 2019. "Modified Modeling and System Stabilization of Shunt Active Power Filter Compensating Loads with μF Capacitance," Energies, MDPI, vol. 12(11), pages 1-19, May.
    16. Okech Emmanuel Okwako & Zhang-Hui Lin & Mali Xin & Kamaraj Premkumar & Alukaka James Rodgers, 2022. "Neural Network Controlled Solar PV Battery Powered Unified Power Quality Conditioner for Grid Connected Operation," Energies, MDPI, vol. 15(18), pages 1-18, September.
    17. Artur Kierzkowski & Szymon Haładyn, 2022. "Method for Reconfiguring Train Schedules Taking into Account the Global Reduction of Railway Energy Consumption," Energies, MDPI, vol. 15(5), pages 1-18, March.
    18. Zhongbei Tian & Ning Zhao & Stuart Hillmansen & Shuai Su & Chenglin Wen, 2020. "Traction Power Substation Load Analysis with Various Train Operating Styles and Substation Fault Modes," Energies, MDPI, vol. 13(11), pages 1-18, June.
    19. Piotr Gołębiowski & Marianna Jacyna & Andrzej Stańczak, 2021. "The Assessment of Energy Efficiency versus Planning of Rail Freight Traffic: A Case Study on the Example of Poland," Energies, MDPI, vol. 14(18), pages 1-18, September.
    20. Raul Gregor & Julio Pacher & Alejandro Espinoza & Alfredo Renault & Leonardo Comparatore & Magno Ayala, 2021. "Harmonics Compensation by Using a Multi-Modular H-Bridge-Based Multilevel Converter," Energies, MDPI, vol. 14(15), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3147-:d:372909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.