IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6572-d910162.html
   My bibliography  Save this article

A Study on the Train Brake Position-Based Control Method for Regenerative Inverters

Author

Listed:
  • Chi-Myeong Yun

    (Department of Transportation Engineering, Korea University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea)

  • Gyu-Jung Cho

    (Smart Electrical & Signaling Division, Korea Railroad Research Institute, 176 Cheoldobangmulgwan-ro, Uiwang-si 16105, Korea)

  • Hyungchul Kim

    (Smart Electrical & Signaling Division, Korea Railroad Research Institute, 176 Cheoldobangmulgwan-ro, Uiwang-si 16105, Korea)

  • Hosung Jung

    (Smart Electrical & Signaling Division, Korea Railroad Research Institute, 176 Cheoldobangmulgwan-ro, Uiwang-si 16105, Korea)

Abstract

The use an inverter is one of the representative ways to utilize regenerative braking energy in railway systems. Due to the nature of urban railways that generate a large amount of regenerative energy, the economic advantages are clear. However, in the case of the existing inverter operation method, a method of operating the inverter using the threshold voltage is used, which has a disadvantage in that power cannot be utilized between the no-load voltage and the threshold voltage. Therefore, in this paper, we propose an optimal location selection method and capacity calculation method for installing a regenerative inverter in an urban rail system, and a control method according to the train brake position to increase the regenerative energy utilization rate. First, the inverter capacity and location were selected by selecting the maximum regenerative energy generation for each substation section through the train performance simulation (TPS) based DC power simulation (DCPS). An inverter control method based on train brake position (BP method) is introduced. Finally, PSCAD/EMTDC, a power analysis program, was used to verify the proposed method. As a result, the use of regenerative energy by an inverter increased by about 62.6%, and more energy was saved at nearby substations through the BP method.

Suggested Citation

  • Chi-Myeong Yun & Gyu-Jung Cho & Hyungchul Kim & Hosung Jung, 2022. "A Study on the Train Brake Position-Based Control Method for Regenerative Inverters," Energies, MDPI, vol. 15(18), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6572-:d:910162
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6572/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6572/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuting Li & Songrong Wu & Shiqiang Xiang & Yabo Zhang & Josep M. Guerrero & Juan C. Vasquez, 2020. "Research on Synchronverter-Based Regenerative Braking Energy Feedback System of Urban Rail Transit," Energies, MDPI, vol. 13(17), pages 1-23, August.
    2. Mihaela Popescu & Alexandru Bitoleanu, 2019. "A Review of the Energy Efficiency Improvement in DC Railway Systems," Energies, MDPI, vol. 12(6), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    2. Aleksandra Kuzior & Marek Staszek, 2021. "Energy Management in the Railway Industry: A Case Study of Rail Freight Carrier in Poland," Energies, MDPI, vol. 14(21), pages 1-21, October.
    3. Regina Lamedica & Alessandro Ruvio & Laura Palagi & Nicola Mortelliti, 2020. "Optimal Siting and Sizing of Wayside Energy Storage Systems in a D.C. Railway Line," Energies, MDPI, vol. 13(23), pages 1-22, November.
    4. Hamed Jafari Kaleybar & Morris Brenna & Federica Foiadelli & Seyed Saeed Fazel & Dario Zaninelli, 2020. "Power Quality Phenomena in Electric Railway Power Supply Systems: An Exhaustive Framework and Classification," Energies, MDPI, vol. 13(24), pages 1-35, December.
    5. Sahil Bhagat & Jacopo Bongiorno & Andrea Mariscotti, 2023. "Influence of Infrastructure and Operating Conditions on Energy Performance of DC Transit Systems," Energies, MDPI, vol. 16(10), pages 1-26, May.
    6. Artur Kierzkowski & Szymon Haładyn, 2022. "Method for Reconfiguring Train Schedules Taking into Account the Global Reduction of Railway Energy Consumption," Energies, MDPI, vol. 15(5), pages 1-18, March.
    7. Zhongbei Tian & Ning Zhao & Stuart Hillmansen & Shuai Su & Chenglin Wen, 2020. "Traction Power Substation Load Analysis with Various Train Operating Styles and Substation Fault Modes," Energies, MDPI, vol. 13(11), pages 1-18, June.
    8. Piotr Gołębiowski & Marianna Jacyna & Andrzej Stańczak, 2021. "The Assessment of Energy Efficiency versus Planning of Rail Freight Traffic: A Case Study on the Example of Poland," Energies, MDPI, vol. 14(18), pages 1-18, September.
    9. Zbigniew Olczykowski & Jacek Kozyra, 2022. "Propagation of Disturbances Generated by DC Electric Traction," Energies, MDPI, vol. 15(18), pages 1-22, September.
    10. Nursaid Polater & Pietro Tricoli, 2022. "Technical Review of Traction Drive Systems for Light Railways," Energies, MDPI, vol. 15(9), pages 1-26, April.
    11. Morris Brenna & Vittorio Bucci & Maria Carmen Falvo & Federica Foiadelli & Alessandro Ruvio & Giorgio Sulligoi & Andrea Vicenzutti, 2020. "A Review on Energy Efficiency in Three Transportation Sectors: Railways, Electrical Vehicles and Marine," Energies, MDPI, vol. 13(9), pages 1-19, May.
    12. Franciszek Restel & Szymon Mateusz Haładyn, 2022. "The Railway Timetable Evaluation Method in Terms of Operational Robustness against Overloads of the Power Supply System," Energies, MDPI, vol. 15(17), pages 1-17, September.
    13. Ivan Radaš & Ivan Župan & Viktor Šunde & Željko Ban, 2021. "Route Profile Dependent Tram Regenerative Braking Algorithm with Reduced Impact on the Supply Network," Energies, MDPI, vol. 14(9), pages 1-22, April.
    14. Katarina Vranešić & Sahil Bhagat & Andrea Mariscotti & Robert Vail, 2023. "Measures and Prescriptions to Reduce Stray Current in the Design of New Track Corridors," Energies, MDPI, vol. 16(17), pages 1-25, August.
    15. Giuliano Cipolletta & Antonio Delle Femine & Daniele Gallo & Mario Luiso & Carmine Landi, 2021. "Design of a Stationary Energy Recovery System in Rail Transport," Energies, MDPI, vol. 14(9), pages 1-16, April.
    16. Mihaela Popescu & Alexandru Bitoleanu & Constantin Vlad Suru & Mihaita Linca & Gheorghe Eugen Subtirelu, 2020. "Adaptive Control of DC Voltage in Three-Phase Three-Wire Shunt Active Power Filters Systems," Energies, MDPI, vol. 13(12), pages 1-24, June.
    17. Mihaela Popescu, 2022. "Energy Efficiency in Electric Transportation Systems," Energies, MDPI, vol. 15(21), pages 1-5, November.
    18. Szymon Haładyn, 2021. "The Problem of Train Scheduling in the Context of the Load on the Power Supply Infrastructure. A Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6572-:d:910162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.