IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2689-d1096166.html
   My bibliography  Save this article

Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics

Author

Listed:
  • Arkadiusz Kampczyk

    (Department of Engineering Surveying and Civil Engineering, Faculty of Geo-Data Science, Geodesy, and Environmental Engineering, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland)

  • Wojciech Gamon

    (Department of Railway Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland)

  • Katarzyna Gawlak

    (Department of Railway Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland)

Abstract

Traction electricity (TE) consumption in rail transportation (rail transport) is determined by factors (determinant) related to the characteristics of railway lines and vehicles. They have an impact on driving speeds, which, in turn, affect energy consumption. The scientific research presented here combined the results of expert, direct and indirect measurement methods, including brainstorming, mind mapping, system approach, heuristics, failure mode and effect analysis. The main objective was to demonstrate the influence of the determinants of TE consumption, depending on the route (road) geometry and characteristics of the traction of electric vehicles and whole trains (catenary-supplied electric vehicles, non-autonomous electric vehicles, and network traction vehicles, especially electric locomotives and electric multiple units, electric multiple-units (EMUs)). Using a new approach, the TE consumption equation, we applied values for the movement resistances of electric locomotives during braking for a jointed railway track M res JRT braking and continuous welded rail tracks M res CWRt braking . The values of the movement resistances of the electric locomotives during startup on the jointed railway track M res JRT startup and continuous welded rail tracks M res CWRt startup were also applied. They showed a strong correlation with the existing speeds of catenary-supplied electric vehicles. The implementation of the new innovative approach is an important contribution to the development of engineering and technical sciences, in particular, the disciplines of civil engineering, surveying/geodesy, and transport.

Suggested Citation

  • Arkadiusz Kampczyk & Wojciech Gamon & Katarzyna Gawlak, 2023. "Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics," Energies, MDPI, vol. 16(6), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2689-:d:1096166
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2689/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2689/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Henryk Wojtaszek & Ireneusz Miciuła, 2019. "Analysis of Factors Giving the Opportunity for Implementation of Innovations on the Example of Manufacturing Enterprises in the Silesian Province," Sustainability, MDPI, vol. 11(20), pages 1-28, October.
    2. Thiel, Christian & Gracia Amillo, Ana & Tansini, Alessandro & Tsakalidis, Anastasios & Fontaras, Georgios & Dunlop, Ewan & Taylor, Nigel & Jäger-Waldau, Arnulf & Araki, Kenji & Nishioka, Kensuke & Ota, 2022. "Impact of climatic conditions on prospects for integrated photovoltaics in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Małgorzata Ćwil & Witold Bartnik & Sebastian Jarzębowski, 2021. "Railway Vehicle Energy Efficiency as a Key Factor in Creating Sustainable Transportation Systems," Energies, MDPI, vol. 14(16), pages 1-14, August.
    4. Justyna Żywiołek & Joanna Rosak-Szyrocka & Maciej Mrowiec, 2021. "Knowledge Management in Households about Energy Saving as Part of the Awareness of Sustainable Development," Energies, MDPI, vol. 14(24), pages 1-14, December.
    5. Shuai Su & Tao Tang & Yihui Wang, 2016. "Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model," Energies, MDPI, vol. 9(2), pages 1-19, February.
    6. Benatia, David, 2022. "Ring the alarm! Electricity markets, renewables, and the pandemic," Energy Economics, Elsevier, vol. 106(C).
    7. Ibrahim, Amier & Jiang, Fangming, 2021. "The electric vehicle energy management: An overview of the energy system and related modeling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Li, Xiang & Lo, Hong K., 2014. "Energy minimization in dynamic train scheduling and control for metro rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 269-284.
    9. Łukasz Kuźmiński & Piotr Maśloch & Marek Bazan & Tomasz Janiczek & Krzysztof Halawa & Henryk Wojtaszek & Ireneusz Miciuła & Tomasz Chajduga & Adam Kawecki & Robert Czwartosz & Jakub Stawik, 2020. "Management of Delay Optimization at Intersections," Energies, MDPI, vol. 13(12), pages 1-22, June.
    10. De Martinis, Valerio & Weidmann, Ulrich A., 2015. "Definition of energy-efficient speed profiles within rail traffic by means of supply design models," Research in Transportation Economics, Elsevier, vol. 54(C), pages 41-50.
    11. Ning Zhao & Zhongbei Tian & Stuart Hillmansen & Lei Chen & Clive Roberts & Shigen Gao, 2022. "Timetable Optimization and Trial Test for Regenerative Braking Energy Utilization in Rapid Transit Systems," Energies, MDPI, vol. 15(13), pages 1-9, July.
    12. Xuesong Feng & Hanxiao Zhang & Yong Ding & Zhili Liu & Hongqin Peng & Bin Xu, 2013. "A Review Study on Traction Energy Saving of Rail Transport," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-9, September.
    13. Zhou, Leishan & Tong, Lu (Carol) & Chen, Junhua & Tang, Jinjin & Zhou, Xuesong, 2017. "Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 157-181.
    14. Sun, Yunpeng & Anwar, Ahsan & Razzaq, Asif & Liang, Xueping & Siddique, Muhammad, 2022. "Asymmetric role of renewable energy, green innovation, and globalization in deriving environmental sustainability: Evidence from top-10 polluted countries," Renewable Energy, Elsevier, vol. 185(C), pages 280-290.
    15. Xinping Yan & Rui Zhang & Jie Ma & Yulin Ma, 2013. "Considering Variable Road Geometry in Adaptive Vehicle Speed Control," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Bärmann & Alexander Martin & Oskar Schneider, 2021. "Efficient Formulations and Decomposition Approaches for Power Peak Reduction in Railway Traffic via Timetabling," Transportation Science, INFORMS, vol. 55(3), pages 747-767, May.
    2. Canca, David & Zarzo, Alejandro, 2017. "Design of energy-Efficient timetables in two-way railway rapid transit lines," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 142-161.
    3. Wang, Xuekai & Tang, Tao & Su, Shuai & Yin, Jiateng & Gao, Ziyou & Lv, Nan, 2021. "An integrated energy-efficient train operation approach based on the space-time-speed network methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    4. Sahil Bhagat & Jacopo Bongiorno & Andrea Mariscotti, 2023. "Influence of Infrastructure and Operating Conditions on Energy Performance of DC Transit Systems," Energies, MDPI, vol. 16(10), pages 1-26, May.
    5. Elżbieta Szaruga & Elżbieta Załoga & Arkadiusz Drewnowski & Paulina Dąbrosz-Drewnowska, 2023. "Convergence of Energy Intensity of the Export of Goods by Rail Transport: Linkages with the Spatial Integration and Economic Condition of Countries," Energies, MDPI, vol. 16(9), pages 1-24, April.
    6. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2018. "The two-train separation problem on non-level track—driving strategies that minimize total required tractive energy subject to prescribed section clearance times," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 135-167.
    7. Luca D’Acierno & Marilisa Botte, 2018. "A Passenger-Oriented Optimization Model for Implementing Energy-Saving Strategies in Railway Contexts," Energies, MDPI, vol. 11(11), pages 1-25, October.
    8. Wang, Pengling & Goverde, Rob M.P., 2019. "Multi-train trajectory optimization for energy-efficient timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 621-635.
    9. Gonzalo Sánchez-Contreras & Adrián Fernández-Rodríguez & Antonio Fernández-Cardador & Asunción P. Cucala, 2023. "A Two-Level Fuzzy Multi-Objective Design of ATO Driving Commands for Energy-Efficient Operation of Metropolitan Railway Lines," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    10. Huanhuan Lv & Yuzhao Zhang & Kang Huang & Xiaotong Yu & Jianjun Wu, 2019. "An Energy-Efficient Timetable Optimization Approach in a Bi-DirectionUrban Rail Transit Line: A Mixed-Integer Linear Programming Model," Energies, MDPI, vol. 12(14), pages 1-24, July.
    11. Hongjie Liu & Tao Tang & Jidong Lv & Ming Chai, 2019. "A Dual-Objective Substation Energy Consumption Optimization Problem in Subway Systems," Energies, MDPI, vol. 12(10), pages 1-28, May.
    12. Lian, Deheng & Mo, Pengli & D’Ariano, Andrea & Gao, Ziyou & Yang, Lixing, 2024. "Energy-saving time allocation strategy with uncertain dwell times in urban rail transit: Two-stage stochastic model and nested dynamic programming framework," European Journal of Operational Research, Elsevier, vol. 317(1), pages 219-242.
    13. Zhaoxiang Tan & Shaofeng Lu & Kai Bao & Shaoning Zhang & Chaoxian Wu & Jie Yang & Fei Xue, 2018. "Adaptive Partial Train Speed Trajectory Optimization," Energies, MDPI, vol. 11(12), pages 1-33, November.
    14. Luan, Xiaojie & Wang, Yihui & De Schutter, Bart & Meng, Lingyun & Lodewijks, Gabriel & Corman, Francesco, 2018. "Integration of real-time traffic management and train control for rail networks - Part 1: Optimization problems and solution approaches," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 41-71.
    15. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 482-508.
    16. Wenxing Wu & Jing Xun & Jiateng Yin & Shibo He & Haifeng Song & Zicong Zhao & Shicong Hao, 2023. "An Integrated Method for Reducing Arrival Interval by Optimizing Train Operation and Route Setting," Mathematics, MDPI, vol. 11(20), pages 1-20, October.
    17. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    18. Kenji Araki & Yasuyuki Ota & Akira Nagaoka & Kensuke Nishioka, 2023. "3D Solar Irradiance Model for Non-Uniform Shading Environments Using Shading (Aperture) Matrix Enhanced by Local Coordinate System," Energies, MDPI, vol. 16(11), pages 1-20, May.
    19. Zhan, Shuguang & Wang, Pengling & Wong, S.C. & Lo, S.M., 2022. "Energy-efficient high-speed train rescheduling during a major disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    20. Hammad Alnuman & Daniel Gladwin & Martin Foster, 2018. "Electrical Modelling of a DC Railway System with Multiple Trains," Energies, MDPI, vol. 11(11), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2689-:d:1096166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.