IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v44y2015icp182-197.html
   My bibliography  Save this article

Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization

Author

Listed:
  • Zhao, Xuebing
  • Qi, Feng
  • Yuan, Chongli
  • Du, Wei
  • Liu, Dehua

Abstract

Transesterification of oil feedstocks using immobilized lipase (IL) is a promising process for biodiesel production. However, the running cost of this process is still higher than that of conversional chemical-catalyzed approaches. To address this challenge, both upstream and downstream processes have to be optimized. This review provides an overview of recent progresses in improving IL-catalyzed biodiesel production, focusing on mid- and down-stream processing such as immobilization of lipase, bioreactors development, process optimization, simulation and techno-economic evaluation. The immobilization of lipase is a costly process. Most of the commercial ILs are prepared by adsorption of free lipase on polymeric materials. However, to further reduce cost, works should be focused on developing cheap carriers and strengthening the interaction between enzyme and carrier but without significant loss of lipase activity. Running cost of lipase also can be reduced by improving its lifetime during transesterification. To achieve this goal, solvents can be used to prevent lipase leaching and eliminate the inhibitive effects of alcohol (usually methanol) and glycerol. Downstream processing includes important units to purify biodiesel products. In this part, works should be focused on minimizing energy consumption and waste effluents. A global process integration and optimization with economic evaluation also should be figured out to improve the economic feasibility of Il-catalyzed production of biodiesel.

Suggested Citation

  • Zhao, Xuebing & Qi, Feng & Yuan, Chongli & Du, Wei & Liu, Dehua, 2015. "Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 182-197.
  • Handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:182-197
    DOI: 10.1016/j.rser.2014.12.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114010739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.12.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jegannathan, Kenthorai Raman & Eng-Seng, Chan & Ravindra, Pogaku, 2011. "Economic assessment of biodiesel production: Comparison of alkali and biocatalyst processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 745-751, January.
    2. Li, Qin & Yan, Yunjun, 2010. "Production of biodiesel catalyzed by immobilized Pseudomonas cepacia lipase from Sapium sebiferum oil in micro-aqueous phase," Applied Energy, Elsevier, vol. 87(10), pages 3148-3154, October.
    3. Berrios, M. & Martín, M.A. & Chica, A.F. & Martín, A., 2011. "Purification of biodiesel from used cooking oils," Applied Energy, Elsevier, vol. 88(11), pages 3625-3631.
    4. Al-Zuhair, Sulaiman & Almenhali, Asma & Hamad, Iman & Alshehhi, Maryam & Alsuwaidi, Noura & Mohamed, Suaad, 2011. "Enzymatic production of biodiesel from used/waste vegetable oils: Design of a pilot plant," Renewable Energy, Elsevier, vol. 36(10), pages 2605-2614.
    5. Yan, Yunjun & Li, Xiang & Wang, Guilong & Gui, Xiaohua & Li, Guanlin & Su, Feng & Wang, Xiaofeng & Liu, Tao, 2014. "Biotechnological preparation of biodiesel and its high-valued derivatives: A review," Applied Energy, Elsevier, vol. 113(C), pages 1614-1631.
    6. Taylor, Benjamin & Xiao, Ning & Sikorski, Janusz & Yong, Minloon & Harris, Tom & Helme, Tim & Smallbone, Andrew & Bhave, Amit & Kraft, Markus, 2013. "Techno-economic assessment of carbon-negative algal biodiesel for transport solutions," Applied Energy, Elsevier, vol. 106(C), pages 262-274.
    7. Atadashi, I.M. & Aroua, M.K. & Aziz, A. Abdul, 2011. "Biodiesel separation and purification: A review," Renewable Energy, Elsevier, vol. 36(2), pages 437-443.
    8. Alves, Magno José & Nascimento, Suellen Mendonça & Pereira, Iara Gomes & Martins, Maria Inês & Cardoso, Vicelma Luiz & Reis, Miria, 2013. "Biodiesel purification using micro and ultrafiltration membranes," Renewable Energy, Elsevier, vol. 58(C), pages 15-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Budžaki, Sandra & Miljić, Goran & Sundaram, Smitha & Tišma, Marina & Hessel, Volker, 2018. "Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors," Applied Energy, Elsevier, vol. 210(C), pages 268-278.
    2. Dash, Archana & Banerjee, Rintu, 2021. "Exploring indigenously produced celite-immobilized Rhizopus oryzae NRRL 3562-lipase for biodiesel production," Energy, Elsevier, vol. 222(C).
    3. Kamel Ariffin, Maryam Farhana & Idris, Ani, 2022. "Fe2O3/Chitosan coated superparamagnetic nanoparticles supporting lipase enzyme from Candida Antarctica for microwave assisted biodiesel production," Renewable Energy, Elsevier, vol. 185(C), pages 1362-1375.
    4. Liu, Xiaoyan & Zhu, Fenfen & Zhang, Rongyan & Zhao, Luyao & Qi, Juanjuan, 2021. "Recent progress on biodiesel production from municipal sewage sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Budžaki, Sandra & Miljić, Goran & Tišma, Marina & Sundaram, Smitha & Hessel, Volker, 2017. "Is there a future for enzymatic biodiesel industrial production in microreactors?," Applied Energy, Elsevier, vol. 201(C), pages 124-134.
    6. Mukhtar, Ahmad & Saqib, Sidra & Mubashir, Muhammad & Ullah, Sami & Inayat, Abrar & Mahmood, Abid & Ibrahim, Muhammad & Show, Pau Loke, 2021. "Mitigation of CO2 emissions by transforming to biofuels: Optimization of biofuels production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Samuel Santos & Jaime Puna & João Gomes, 2020. "A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production," Energies, MDPI, vol. 13(11), pages 1-19, June.
    8. Silvia Cesarini & F. I. Javier Pastor & Per M. Nielsen & Pilar Diaz, 2015. "Moving towards a Competitive Fully Enzymatic Biodiesel Process," Sustainability, MDPI, vol. 7(6), pages 1-20, June.
    9. Tacias-Pascacio, Veymar G. & Torrestiana-Sánchez, Beatriz & Dal Magro, Lucas & Virgen-Ortíz, Jose J. & Suárez-Ruíz, Francisco J. & Rodrigues, Rafael C. & Fernandez-Lafuente, Roberto, 2019. "Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization," Renewable Energy, Elsevier, vol. 135(C), pages 1-9.
    10. Tran, Dang-Thuan & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes," Applied Energy, Elsevier, vol. 185(P1), pages 376-409.
    11. Keon Hee Kim & Eun Yeol Lee, 2017. "Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil," Energies, MDPI, vol. 10(11), pages 1-15, November.
    12. Zhang, Zhijin & Du, Yingjie & Kuang, Geling & Shen, Xuejian & Jia, Xiaotong & Wang, Ziyuan & Feng, Yuxiao & Jia, Shiru & Liu, Fufeng & Bilal, Muhammad & Cui, Jiandong, 2022. "Lipase-Ca2+ hybrid nanobiocatalysts through interfacial protein-inorganic self-assembly in deep-eutectic solvents (DES)/water two-phase system for biodiesel production," Renewable Energy, Elsevier, vol. 197(C), pages 110-124.
    13. Tooba Touqeer & Muhammad Waseem Mumtaz & Hamid Mukhtar & Ahmad Irfan & Sadia Akram & Aroosh Shabbir & Umer Rashid & Imededdine Arbi Nehdi & Thomas Shean Yaw Choong, 2019. "Fe 3 O 4 -PDA-Lipase as Surface Functionalized Nano Biocatalyst for the Production of Biodiesel Using Waste Cooking Oil as Feedstock: Characterization and Process Optimization," Energies, MDPI, vol. 13(1), pages 1-19, December.
    14. Migle Santaraite & Egle Sendzikiene & Violeta Makareviciene & Kiril Kazancev, 2020. "Biodiesel Production by Lipase-Catalyzed in Situ Transesterification of Rapeseed Oil Containing a High Free Fatty Acid Content with Ethanol in Diesel Fuel Media," Energies, MDPI, vol. 13(10), pages 1-12, May.
    15. Zulfiqar, Anam & Mumtaz, Muhammad Waseem & Mukhtar, Hamid & Najeeb, Jawayria & Irfan, Ahmad & Akram, Sadia & Touqeer, Tooba & Nabi, Ghulam, 2021. "Lipase-PDA-TiO2 NPs: An emphatic nano-biocatalyst for optimized biodiesel production from Jatropha curcas oil," Renewable Energy, Elsevier, vol. 169(C), pages 1026-1037.
    16. Dutra, Luciana da Silva & Costa Cerqueira Pinto, Martina & Cipolatti, Eliane Pereira & Aguieiras, Erika Cristina G. & Manoel, Evelin Andrade & Greco-Duarte, Jaqueline & Guimarães Freire, Denise Maria , 2022. "How the biodiesel from immobilized enzymes production is going on: An advanced bibliometric evaluation of global research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. Arumugam, A. & Thulasidharan, D. & Jegadeesan, Gautham B., 2018. "Process optimization of biodiesel production from Hevea brasiliensis oil using lipase immobilized on spherical silica aerogel," Renewable Energy, Elsevier, vol. 116(PA), pages 755-761.
    18. Zhong, Le & Jiao, Xiaobo & Hu, Hongtong & Shen, Xuejian & Zhao, Juan & Feng, Yuxiao & Li, Conghai & Du, Yingjie & Cui, Jiandong & Jia, Shiru, 2021. "Activated magnetic lipase-inorganic hybrid nanoflowers: A highly active and recyclable nanobiocatalyst for biodiesel production," Renewable Energy, Elsevier, vol. 171(C), pages 825-832.
    19. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    20. Mohamed, Mohamed Mokhatr & Bayoumy, W.A. & El-Faramawy, Hossam & El-Dogdog, Wagdy & Mohamed, Ashraf A., 2020. "A novel α-Fe2O3/AlOOH(γ-Al2O3) nanocatalyst for efficient biodiesel production from waste oil: Kinetic and thermal studies," Renewable Energy, Elsevier, vol. 160(C), pages 450-464.
    21. Babaki, Mohadese & Yousefi, Maryam & Habibi, Zohreh & Mohammadi, Mehdi & Yousefi, Parisa & Mohammadi, Javad & Brask, Jesper, 2016. "Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents," Renewable Energy, Elsevier, vol. 91(C), pages 196-206.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mukhtar, Ahmad & Saqib, Sidra & Mubashir, Muhammad & Ullah, Sami & Inayat, Abrar & Mahmood, Abid & Ibrahim, Muhammad & Show, Pau Loke, 2021. "Mitigation of CO2 emissions by transforming to biofuels: Optimization of biofuels production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Dutra, Luciana da Silva & Costa Cerqueira Pinto, Martina & Cipolatti, Eliane Pereira & Aguieiras, Erika Cristina G. & Manoel, Evelin Andrade & Greco-Duarte, Jaqueline & Guimarães Freire, Denise Maria , 2022. "How the biodiesel from immobilized enzymes production is going on: An advanced bibliometric evaluation of global research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    4. Kusworo, Tutuk Djoko & Widayat, Widayat & Utomo, Dani Puji & Pratama, Yulius Harmawan Setya & Arianti, Riska Anindisa Vira, 2020. "Performance evaluation of modified nanohybrid membrane polyethersulfone-nano ZnO (PES-nano ZnO) using three combination effect of PVP, irradiation of ultraviolet and thermal for biodiesel purification," Renewable Energy, Elsevier, vol. 148(C), pages 935-945.
    5. Seyyedeh Faezeh Mirab Haghighi & Payam Parvasi & Seyyed Mohammad Jokar & Angelo Basile, 2021. "Investigating the Effects of Ultrasonic Frequency and Membrane Technology on Biodiesel Production from Chicken Waste," Energies, MDPI, vol. 14(8), pages 1-21, April.
    6. Sandouqa, Arwa & Al-Shannag, Mohammad & Al-Hamamre, Zayed, 2020. "Biodiesel purification using biomass-based adsorbent manufactured from delignified olive cake residues," Renewable Energy, Elsevier, vol. 151(C), pages 103-117.
    7. Tran, Dang-Thuan & Chen, Ching-Lung & Chang, Jo-Shu, 2016. "Continuous biodiesel conversion via enzymatic transesterification catalyzed by immobilized Burkholderia lipase in a packed-bed bioreactor," Applied Energy, Elsevier, vol. 168(C), pages 340-350.
    8. Aksoy, Laçine, 2011. "Opium poppy (Papaver somniferum L.) oil for preparation of biodiesel: Optimization of conditions," Applied Energy, Elsevier, vol. 88(12), pages 4713-4718.
    9. Noraini, M.Y. & Ong, Hwai Chyuan & Badrul, Mohamed Jan & Chong, W.T., 2014. "A review on potential enzymatic reaction for biofuel production from algae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 24-34.
    10. Marta Ramos & Ana Paula Soares Dias & Jaime Filipe Puna & João Gomes & João Carlos Bordado, 2019. "Biodiesel Production Processes and Sustainable Raw Materials," Energies, MDPI, vol. 12(23), pages 1-30, November.
    11. Sokač, Tea & Gojun, Martin & Tušek, Ana Jurinjak & Šalić, Anita & Zelić, Bruno, 2020. "Purification of biodiesel produced by lipase catalysed transesterification by ultrafiltration: Selection of membranes and analysis of membrane blocking mechanisms," Renewable Energy, Elsevier, vol. 159(C), pages 642-651.
    12. Padula, Miquele L. & Romero, Arthur S. & Hotza, Dachamir & Innocentini, Murilo D.M. & Pinto, Maria E.G. & Pedrini, Augusto S. & Rebelatto, Evertan & Ribeiro, Luiz Fernando B. & Zin, Guilherme & Olivei, 2022. "Dehydration of fatty acid methyl ester mixtures from enzymatic biodiesel using a modified PVDF membrane," Renewable Energy, Elsevier, vol. 187(C), pages 237-247.
    13. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    14. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    15. Babu, D. & Karvembu, R. & Anand, R., 2018. "Impact of split injection strategy on combustion, performance and emissions characteristics of biodiesel fuelled common rail direct injection assisted diesel engine," Energy, Elsevier, vol. 165(PB), pages 577-592.
    16. Li, Zhuoxue & Yang, Depo & Huang, Miaoling & Hu, Xinjun & Shen, Jiangang & Zhao, Zhimin & Chen, Jianping, 2012. "Chrysomya megacephala (Fabricius) larvae: A new biodiesel resource," Applied Energy, Elsevier, vol. 94(C), pages 349-354.
    17. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Yaakob, Zahira & Mohammad, Masita & Alherbawi, Mohammad & Alam, Zahangir & Sopian, Kamaruzaman, 2013. "Overview of the production of biodiesel from Waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 184-193.
    19. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    20. Rozina, & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nasir & Lu, Houfang, 2017. "Biodiesel synthesis from Saussurea heteromalla (D.Don) Hand-Mazz integrating ethanol production using biorefinery approach," Energy, Elsevier, vol. 141(C), pages 1810-1818.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:182-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.