IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v160y2020icp450-464.html
   My bibliography  Save this article

A novel α-Fe2O3/AlOOH(γ-Al2O3) nanocatalyst for efficient biodiesel production from waste oil: Kinetic and thermal studies

Author

Listed:
  • Mohamed, Mohamed Mokhatr
  • Bayoumy, W.A.
  • El-Faramawy, Hossam
  • El-Dogdog, Wagdy
  • Mohamed, Ashraf A.

Abstract

Different α-Fe2O3 loading (4–12 wt%) doped nanowires AlOOH/γ-Al2O3 catalysts are synthesized using a deposition hydrothermal technique and thoroughly characterized using XRD, SAED-TEM, FTIR, UV–Vis, N2 sorptiometry and XPS measurements. The 12 wt% α-Fe2O3/AlOOH(γ-Al2O3) catalyst presented the highest fatty acid methyl ester (FAME) Yield that comprised of 100% for virgin oil and 94.3% for the waste one, all performed under mild optimized conditions (60 °C, methanol to oil molar ratio = 6:1, 3 wt% catalyst, reaction rate 600 rpm and within 3 h reaction time). It also shows high recyclability without significant loss in activity because of the superior large surface area (323.3 m2/g), high number of acid sites (0.45 mmol g−1), deep pore volume (0.322 ml/g) and to the exposed active site planes (110) and (214) of α-Fe2O3. The kinetic constant (k = 0.016–0.02 min−1) and the activation energy (Ea = 57.4 kJ mol−1) of the reaction together with ΔH ‡ (59.4 kJ mol−1), ΔG ‡ (+95.9 kJ mol−1) and ΔS ‡ (- 0.108 kJ mol−1) values elaborate that the reaction is endothermic, non-spontaneous and obey an associative path. The fuel properties derived from cottonseed oil exhibited high quality biodiesel comparable to the international (ASTM) standards.

Suggested Citation

  • Mohamed, Mohamed Mokhatr & Bayoumy, W.A. & El-Faramawy, Hossam & El-Dogdog, Wagdy & Mohamed, Ashraf A., 2020. "A novel α-Fe2O3/AlOOH(γ-Al2O3) nanocatalyst for efficient biodiesel production from waste oil: Kinetic and thermal studies," Renewable Energy, Elsevier, vol. 160(C), pages 450-464.
  • Handle: RePEc:eee:renene:v:160:y:2020:i:c:p:450-464
    DOI: 10.1016/j.renene.2020.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812031082X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malhotra, Rashi & Ali, Amjad, 2018. "Lithium-doped ceria supported SBA−15 as mesoporous solid reusable and heterogeneous catalyst for biodiesel production via simultaneous esterification and transesterification of waste cottonseed oil," Renewable Energy, Elsevier, vol. 119(C), pages 32-44.
    2. Liu, Chang & Lv, Pengmei & Yuan, Zhenhong & Yan, Fang & Luo, Wen, 2010. "The nanometer magnetic solid base catalyst for production of biodiesel," Renewable Energy, Elsevier, vol. 35(7), pages 1531-1536.
    3. Zhao, Xuebing & Qi, Feng & Yuan, Chongli & Du, Wei & Liu, Dehua, 2015. "Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 182-197.
    4. Gao, Lijing & Wang, Songcheng & Xu, Wei & Xiao, Guomin, 2015. "Biodiesel production from palm oil over monolithic KF/γ-Al2O3/honeycomb ceramic catalyst," Applied Energy, Elsevier, vol. 146(C), pages 196-201.
    5. Noiroj, Krisada & Intarapong, Pisitpong & Luengnaruemitchai, Apanee & Jai-In, Samai, 2009. "A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil," Renewable Energy, Elsevier, vol. 34(4), pages 1145-1150.
    6. Sánchez, Marcos & Navas, Marisa & Ruggera, José F. & Casella, Mónica L. & Aracil, José & Martínez, Mercedes, 2014. "Biodiesel production optimization using γAl2O3 based catalysts," Energy, Elsevier, vol. 73(C), pages 661-669.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maleki, Basir & Ashraf Talesh, S. Siamak, 2022. "Optimization of ZnO incorporation to αFe2O3 nanoparticles as an efficient catalyst for biodiesel production in a sonoreactor: Application on the CI engine," Renewable Energy, Elsevier, vol. 182(C), pages 43-59.
    2. Ning, Yilin & Niu, Shengli & Wang, Yongzheng & Zhao, Jianli & Lu, Chunmei, 2021. "Sono-modified halloysite nanotube with NaAlO2 as novel heterogeneous catalyst for biodiesel production: Optimization via GA_BP neural network," Renewable Energy, Elsevier, vol. 175(C), pages 391-404.
    3. Aghel, Babak & Gouran, Ashkan & Parandi, Ehsan & Jumeh, Binta Hadi & Nodeh, Hamid Rashidi, 2022. "Production of biodiesel from high acidity waste cooking oil using nano GO@MgO catalyst in a microreactor," Renewable Energy, Elsevier, vol. 200(C), pages 294-302.
    4. Abdelmigeed, Mai O. & Al-Sakkari, Eslam G. & Hefney, Mahmoud S. & Ismail, Fatma M. & Ahmed, Tamer S. & Ismail, Ibrahim M., 2021. "Biodiesel production catalyzed by NaOH/Magnetized ZIF-8: Yield improvement using methanolysis and catalyst reusability enhancement," Renewable Energy, Elsevier, vol. 174(C), pages 253-261.
    5. Li, Ying & Niu, Shengli & Wang, Jun & Zhou, Wenbo & Wang, Yongzheng & Han, Kuihua & Lu, Chunmei, 2022. "Mesoporous SrTiO3 perovskite as a heterogeneous catalyst for biodiesel production: Experimental and DFT studies," Renewable Energy, Elsevier, vol. 184(C), pages 164-175.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tran, Dang-Thuan & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes," Applied Energy, Elsevier, vol. 185(P1), pages 376-409.
    2. Gupta, Anilkumar R. & Rathod, Virendra K., 2018. "Calcium diglyceroxide catalyzed biodiesel production from waste cooking oil in the presence of microwave: Optimization and kinetic studies," Renewable Energy, Elsevier, vol. 121(C), pages 757-767.
    3. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    4. Liu, Ju-Zhao & Cui, Qi & Kang, Yu-Fei & Meng, Yao & Gao, Ming-Zhu & Efferth, Thomas & Fu, Yu-Jie, 2019. "Euonymus maackii Rupr. Seed oil as a new potential non-edible feedstock for biodiesel," Renewable Energy, Elsevier, vol. 133(C), pages 261-267.
    5. Keon Hee Kim & Eun Yeol Lee, 2017. "Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil," Energies, MDPI, vol. 10(11), pages 1-15, November.
    6. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    7. Qian, Kun & Shen, Xiang & Wang, Yanxin & Gao, Qiang & Ding, Hongwei, 2015. "In-situ transesterification of Jatropha oil over an efficient solid alkali using low leaching component supported on industrial silica gel," Energy, Elsevier, vol. 93(P2), pages 2251-2257.
    8. Budžaki, Sandra & Miljić, Goran & Sundaram, Smitha & Tišma, Marina & Hessel, Volker, 2018. "Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors," Applied Energy, Elsevier, vol. 210(C), pages 268-278.
    9. Essamlali, Younes & Amadine, Othmane & Fihri, Aziz & Zahouily, Mohamed, 2019. "Sodium modified fluorapatite as a sustainable solid bi-functional catalyst for biodiesel production from rapeseed oil," Renewable Energy, Elsevier, vol. 133(C), pages 1295-1307.
    10. Zhang-Chun Tang & Yanjun Xia & Qi Xue & Jie Liu, 2018. "A Non-Probabilistic Solution for Uncertainty and Sensitivity Analysis on Techno-Economic Assessments of Biodiesel Production with Interval Uncertainties," Energies, MDPI, vol. 11(3), pages 1-17, March.
    11. Tooba Touqeer & Muhammad Waseem Mumtaz & Hamid Mukhtar & Ahmad Irfan & Sadia Akram & Aroosh Shabbir & Umer Rashid & Imededdine Arbi Nehdi & Thomas Shean Yaw Choong, 2019. "Fe 3 O 4 -PDA-Lipase as Surface Functionalized Nano Biocatalyst for the Production of Biodiesel Using Waste Cooking Oil as Feedstock: Characterization and Process Optimization," Energies, MDPI, vol. 13(1), pages 1-19, December.
    12. Chen, Ying-Chen & Lin, Dai-Ying & Chen, Bing-Hung, 2019. "Metasilicate-based catalyst prepared from natural diatomaceous earth for biodiesel production," Renewable Energy, Elsevier, vol. 138(C), pages 1042-1050.
    13. Li, Mantian & Chen, Jinyi & Huang, Youjie & Li, Meichen & Lin, Xiaocheng & Qiu, Ting, 2020. "Reusable and efficient heterogeneous catalysts for biodiesel production from free fatty acids and oils: Self-solidifying hybrid ionic liquids," Energy, Elsevier, vol. 211(C).
    14. Wang, Tianyu & Ma, Xiaoling & Bingwa, Ndzondelelo & Yu, Hao & Wang, Yunpu & Li, Guoning & Guo, Min & Xiao, Qiangqiang & Li, Shijie & Zhao, Xudong & Li, Hui, 2024. "A novel bimetallic CaFe-MOF derivative for transesterification: Catalytic performance, characterization, and stability," Energy, Elsevier, vol. 292(C).
    15. Li, Ying & Niu, Shengli & Hao, Yanan & Zhou, Wenbo & Wang, Jun & Liu, Jiangwei, 2022. "Role of oxygen vacancy on activity of Fe-doped SrTiO3 perovskite bifunctional catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 199(C), pages 1258-1271.
    16. Borah, Manash Jyoti & Devi, Anuchaya & Borah, Raju & Deka, Dhanapati, 2019. "Synthesis and application of Co doped ZnO as heterogeneous nanocatalyst for biodiesel production from non-edible oil," Renewable Energy, Elsevier, vol. 133(C), pages 512-519.
    17. Zhang, Pingbo & Liu, Yanlei & Fan, Mingming & Jiang, Pingping, 2016. "Catalytic performance of a novel amphiphilic alkaline ionic liquid for biodiesel production: Influence of basicity and conductivity," Renewable Energy, Elsevier, vol. 86(C), pages 99-105.
    18. Banković–Ilić, Ivana B. & Miladinović, Marija R. & Stamenković, Olivera S. & Veljković, Vlada B., 2017. "Application of nano CaO–based catalysts in biodiesel synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 746-760.
    19. Xue, Bao-jin & Luo, Jia & Zhang, Fan & Fang, Zhen, 2014. "Biodiesel production from soybean and Jatropha oils by magnetic CaFe2O4–Ca2Fe2O5-based catalyst," Energy, Elsevier, vol. 68(C), pages 584-591.
    20. Teuku Meurah Indra Riayatsyah & Hwai Chyuan Ong & Wen Tong Chong & Lisa Aditya & Heri Hermansyah & Teuku Meurah Indra Mahlia, 2017. "Life Cycle Cost and Sensitivity Analysis of Reutealis trisperma as Non-Edible Feedstock for Future Biodiesel Production," Energies, MDPI, vol. 10(7), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:160:y:2020:i:c:p:450-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.