IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v18y2013icp184-193.html
   My bibliography  Save this article

Overview of the production of biodiesel from Waste cooking oil

Author

Listed:
  • Yaakob, Zahira
  • Mohammad, Masita
  • Alherbawi, Mohammad
  • Alam, Zahangir
  • Sopian, Kamaruzaman

Abstract

In recent years, biodiesel has attracted significant attention from researchers, governments, and industries as a renewable, biodegradable, and non-toxic fuel. However, several feedstocks have been proven impractical or infeasible because of their extremely high cost due to their usage primarily as food resources. Waste cooking oil (WCO) is considered the most promising biodiesel feedstock despite its drawbacks, such as its high free fatty acid (FFA) and water contents. This review paper provides a comprehensive overview of the pre-treatment and the usage of WCO for the production of biodiesel using several methods, different types of reactors, and various types and amounts of alcohol and catalysts. The most common process in the production of biodiesel is transesterification, and using a methanol–ethanol mixture will combine the advantages of both alcohols in biodiesel production. In addition, this paper highlights the purification and analysis of the produced biodiesel, operating parameters that highly affect the biodiesel yield, and several economic studies. This review suggests that WCO is a promising feedstock in biodiesel production.

Suggested Citation

  • Yaakob, Zahira & Mohammad, Masita & Alherbawi, Mohammad & Alam, Zahangir & Sopian, Kamaruzaman, 2013. "Overview of the production of biodiesel from Waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 184-193.
  • Handle: RePEc:eee:rensus:v:18:y:2013:i:c:p:184-193
    DOI: 10.1016/j.rser.2012.10.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112005588
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.10.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gog, Adriana & Roman, Marius & Toşa, Monica & Paizs, Csaba & Irimie, Florin Dan, 2012. "Biodiesel production using enzymatic transesterification – Current state and perspectives," Renewable Energy, Elsevier, vol. 39(1), pages 10-16.
    2. Guo, Pingmei & Huang, Fenghong & Huang, Qingde & Zheng, Chang, 2012. "RETRACTED: Biodiesel production using magnetically stabilized fluidized bed reactor," Renewable Energy, Elsevier, vol. 38(1), pages 10-15.
    3. Szczęsna Antczak, Mirosława & Kubiak, Aneta & Antczak, Tadeusz & Bielecki, Stanisław, 2009. "Enzymatic biodiesel synthesis – Key factors affecting efficiency of the process," Renewable Energy, Elsevier, vol. 34(5), pages 1185-1194.
    4. Berrios, M. & Martín, M.A. & Chica, A.F. & Martín, A., 2011. "Purification of biodiesel from used cooking oils," Applied Energy, Elsevier, vol. 88(11), pages 3625-3631.
    5. Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
    6. Tan, K.T. & Lee, K.T. & Mohamed, A.R., 2011. "Potential of waste palm cooking oil for catalyst-free biodiesel production," Energy, Elsevier, vol. 36(4), pages 2085-2088.
    7. Tsai, Wen-Tien & Lin, Chih-Chung & Yeh, Ching-Wei, 2007. "An analysis of biodiesel fuel from waste edible oil in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 838-857, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    2. Christopher, Lew P. & Hemanathan Kumar, & Zambare, Vasudeo P., 2014. "Enzymatic biodiesel: Challenges and opportunities," Applied Energy, Elsevier, vol. 119(C), pages 497-520.
    3. Guldhe, Abhishek & Singh, Bhaskar & Mutanda, Taurai & Permaul, Kugen & Bux, Faizal, 2015. "Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1447-1464.
    4. Guldhe, Abhishek & Singh, Poonam & Kumari, Sheena & Rawat, Ismail & Permaul, Kugen & Bux, Faizal, 2016. "Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst," Renewable Energy, Elsevier, vol. 85(C), pages 1002-1010.
    5. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    6. Shemelis N. Gebremariam & Trine Hvoslef-Eide & Meseret T. Terfa & Jorge M. Marchetti, 2019. "Techno-Economic Performance of Different Technological Based Bio-Refineries for Biofuel Production," Energies, MDPI, vol. 12(20), pages 1-21, October.
    7. Giakoumis, Evangelos G., 2013. "A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation," Renewable Energy, Elsevier, vol. 50(C), pages 858-878.
    8. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    9. Pourzolfaghar, Hamed & Abnisa, Faisal & Daud, Wan Mohd Ashri Wan & Aroua, Mohamed Kheireddine, 2016. "A review of the enzymatic hydroesterification process for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 245-257.
    10. Zhang, Yong & Bao, Xiangtai & Ren, Gang & Cai, Xiaohua & Li, Jian, 2012. "Analysing the status, obstacles and recommendations for WCOs of restaurants as biodiesel feedstocks in China from supply chain’ perspectives," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 20-37.
    11. Ranjit, P.S. & Chintala, Venkateswarlu, 2022. "Direct utilization of preheated deep fried oil in an indirect injection compression ignition engine with waste heat recovery framework," Energy, Elsevier, vol. 242(C).
    12. Samuel Santos & Jaime Puna & João Gomes, 2020. "A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production," Energies, MDPI, vol. 13(11), pages 1-19, June.
    13. Adewale, Peter & Dumont, Marie-Josée & Ngadi, Michael, 2015. "Recent trends of biodiesel production from animal fat wastes and associated production techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 574-588.
    14. Chen, Kang-Shin & Lin, Yuan-Chung & Hsu, Kuo-Hsiang & Wang, Hsin-Kai, 2012. "Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system," Energy, Elsevier, vol. 38(1), pages 151-156.
    15. Ko, Chun-Han & Yeh, Kai-Wun & Wang, Ya-Nang & Wu, Chien-Hou & Chang, Fang-Chih & Cheng, Ming-Hsun & Liou, Chia-Shin, 2012. "Impact of methanol addition strategy on enzymatic transesterification of jatropha oil for biodiesel processing," Energy, Elsevier, vol. 48(1), pages 375-379.
    16. Suhaiza Zailani & Mohammad Iranmanesh & Behzad Foroughi & Kwangyong Kim & Sunghyup Sean Hyun, 2020. "Effects of supply chain practices, integration and closed-loop supply chain activities on cost-containment of biodiesel," Review of Managerial Science, Springer, vol. 14(6), pages 1299-1319, December.
    17. Baskar, G. & Aiswarya, R., 2016. "Trends in catalytic production of biodiesel from various feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 496-504.
    18. Cao, Leichang & Wang, Jieni & Liu, Kuojin & Han, Sheng, 2014. "Ethyl acetoacetate: A potential bio-based diluent for improving the cold flow properties of biodiesel from waste cooking oil," Applied Energy, Elsevier, vol. 114(C), pages 18-21.
    19. Kalam, M.A. & Masjuki, H.H. & Jayed, M.H. & Liaquat, A.M., 2011. "Emission and performance characteristics of an indirect ignition diesel engine fuelled with waste cooking oil," Energy, Elsevier, vol. 36(1), pages 397-402.
    20. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:18:y:2013:i:c:p:184-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.