IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v205y2021ics0951832020307766.html
   My bibliography  Save this article

Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events

Author

Listed:
  • Misuri, Alessio
  • Landucci, Gabriele
  • Cozzani, Valerio

Abstract

Technological accidents triggered by natural hazards (Natech accidents) are likely to escalate in cascading scenarios with severe consequences. Indeed, safety barriers implemented in process plants to prevent and mitigate accidents may be affected by natural hazards as well. The present study proposes a novel comprehensive method to assess safety barriers and protection systems performance modification during natural hazards, as well as the resulting modification in the expected frequency of secondary technological scenarios that may arise. In particular, the probability and frequency of domino scenarios initiated by Natech events are assessed considering the possible concurrent degradation of safety barrier performance in case of floods and earthquakes. An approach based on layer of protection analysis is adopted to quantify safety barrier performance degradation, accounting for the modification of barrier availability and effectiveness. A dedicated event tree analysis is applied to domino effect assessment and quantification of overall escalation scenarios. The results obtained allowed a detailed assessment of the expected frequency of secondary mitigated escalation scenarios, considering the possible effect of barriers degradation within Natech events.

Suggested Citation

  • Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020307766
    DOI: 10.1016/j.ress.2020.107278
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020307766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saleh, J.H. & Marais, K.B. & Bakolas, E. & Cowlagi, R.V., 2010. "Highlights from the literature on accident causation and system safety: Review of major ideas, recent contributions, and challenges," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1105-1116.
    2. Necci, Amos & Antonioni, Giacomo & Bonvicini, Sarah & Cozzani, Valerio, 2016. "Quantitative assessment of risk due to major accidents triggered by lightning," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 60-72.
    3. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    4. Elisabeth Krausmann & Elisabetta Renni & Michela Campedel & Valerio Cozzani, 2011. "Industrial accidents triggered by earthquakes, floods and lightning: lessons learned from a database analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 285-300, October.
    5. Khakzad, Nima & Cozzani, Valerio, 2020. "Special issue: Quantitative assessment and risk management of Natech accidents," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. Dutuit, Y. & Innal, F. & Rauzy, A. & Signoret, J.-P., 2008. "Probabilistic assessments in relationship with safety integrity levels by using Fault Trees," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1867-1876.
    7. Gao, Xueli & Barabady, Javad & Markeset, Tore, 2010. "An approach for prediction of petroleum production facility performance considering Arctic influence factors," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 837-846.
    8. Necci, Amos & Argenti, Francesca & Landucci, Gabriele & Cozzani, Valerio, 2014. "Accident scenarios triggered by lightning strike on atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 30-46.
    9. Landucci, Gabriele & Necci, Amos & Antonioni, Giacomo & Argenti, Francesca & Cozzani, Valerio, 2017. "Risk assessment of mitigated domino scenarios in process facilities," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 37-53.
    10. Michael K. Lindell & Ronald W. Perry, 1997. "Hazardous Materials Releases in the Northridge Earthquake: Implications for Seismic Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 17(2), pages 147-156, April.
    11. Landucci, Gabriele & Argenti, Francesca & Tugnoli, Alessandro & Cozzani, Valerio, 2015. "Quantitative assessment of safety barrier performance in the prevention of domino scenarios triggered by fire," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 30-43.
    12. Necci, Amos & Antonioni, Giacomo & Cozzani, Valerio & Krausmann, Elisabeth & Borghetti, Alberto & Nucci, Carlo Alberto, 2014. "Assessment of lightning impact frequency for process equipment," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 95-105.
    13. Chen, Chao & Reniers, Genserik & Khakzad, Nima, 2019. "Integrating safety and security resources to protect chemical industrial parks from man-made domino effects: A dynamic graph approach," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Khakzad, Nima & Reniers, Genserik, 2015. "Using graph theory to analyze the vulnerability of process plants in the context of cascading effects," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 63-73.
    15. Michela Campedel & Valerio Cozzani & Anita Garcia‐Agreda & Ernesto Salzano, 2008. "Extending the Quantitative Assessment of Industrial Risks to Earthquake Effects," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1231-1246, October.
    16. Piesik, E. & Śliwiński, M. & Barnert, T., 2016. "Determining and verifying the safety integrity level of the safety instrumented systems with the uncertainty and security aspects," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 259-272.
    17. Duijm, Nijs Jan, 2009. "Safety-barrier diagrams as a safety management tool," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 332-341.
    18. Yang, Yunfeng & Chen, Guohua & Reniers, Genserik, 2020. "Vulnerability assessment of atmospheric storage tanks to floods based on logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    19. Srivastav, Himanshu & Barros, Anne & Lundteigen, Mary Ann, 2020. "Modelling framework for performance analysis of SIS subject to degradation due to proof tests," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    20. Necci, Amos & Antonioni, Giacomo & Cozzani, Valerio & Krausmann, Elisabeth & Borghetti, Alberto & Alberto Nucci, Carlo, 2013. "A model for process equipment damage probability assessment due to lightning," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 91-99.
    21. Antonioni, Giacomo & Landucci, Gabriele & Necci, Amos & Gheorghiu, Diana & Cozzani, Valerio, 2015. "Quantitative assessment of risk due to NaTech scenarios caused by floods," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 334-345.
    22. George E. Apostolakis, 2004. "How Useful Is Quantitative Risk Assessment?," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 515-520, June.
    23. Antonioni, Giacomo & Bonvicini, Sarah & Spadoni, Gigliola & Cozzani, Valerio, 2009. "Development of a framework for the risk assessment of Na-Tech accidental events," Reliability Engineering and System Safety, Elsevier, vol. 94(9), pages 1442-1450.
    24. Khakzad, Nima & Landucci, Gabriele & Reniers, Genserik, 2017. "Application of dynamic Bayesian network to performance assessment of fire protection systems during domino effects," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 232-247.
    25. Khakzad, Nima & Landucci, Gabriele & Cozzani, Valerio & Reniers, Genserik & Pasman, Hans, 2018. "Cost-effective fire protection of chemical plants against domino effects," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 412-421.
    26. Landucci, Gabriele & Antonioni, Giacomo & Tugnoli, Alessandro & Cozzani, Valerio, 2012. "Release of hazardous substances in flood events: Damage model for atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 200-216.
    27. Misuri, Alessio & Casson Moreno, Valeria & Quddus, Noor & Cozzani, Valerio, 2019. "Lessons learnt from the impact of hurricane Harvey on the chemical and process industry," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    28. Necci, Amos & Cozzani, Valerio & Spadoni, Gigliola & Khan, Faisal, 2015. "Assessment of domino effect: State of the art and research Needs," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 3-18.
    29. Qi, Meng & Kan, Yufeng & Li, Xun & Wang, Xiaoying & Zhao, Dongfeng & Moon, Il, 2020. "Spurious activation and operational integrity evaluation of redundant safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    30. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2017. "Portfolio optimization of safety measures for reducing risks in nuclear systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 20-29.
    31. Alileche, Nassim & Cozzani, Valerio & Reniers, Genserik & Estel, Lionel, 2015. "Thresholds for domino effects and safety distances in the process industry: A review of approaches and regulations," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 74-84.
    32. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2020. "Assessment of safety barrier performance in Natech scenarios," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    33. Janssens, Jochen & Talarico, Luca & Reniers, Genserik & Sörensen, Kenneth, 2015. "A decision model to allocate protective safety barriers and mitigate domino effects," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 44-52.
    34. Pamela Sands Showalter & Mary Fran Myers, 1994. "Natural Disasters in the United States as Release Agents of Oil, Chemicals, or Radiological Materials Between 1980‐1989: Analysis and Recommendations," Risk Analysis, John Wiley & Sons, vol. 14(2), pages 169-182, April.
    35. Landucci, Gabriele & Necci, Amos & Antonioni, Giacomo & Tugnoli, Alessandro & Cozzani, Valerio, 2014. "Release of hazardous substances in flood events: Damage model for horizontal cylindrical vessels," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 125-145.
    36. Khakzad, Nima & Reniers, Genserik & Abbassi, Rouzbeh & Khan, Faisal, 2016. "Vulnerability analysis of process plants subject to domino effects," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 127-136.
    37. Zuluaga Mayorga, Santiago & Sánchez-Silva, Mauricio & Ramírez Olivar, Oscar J. & Muñoz Giraldo, Felipe, 2019. "Development of parametric fragility curves for storage tanks: A Natech approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Lixing & Chen, Guohua & Zheng, Mianbin & Gao, Xiaoming & Luo, Chennan & Rao, Xiaohui, 2024. "Agent-based modeling methodology and temporal simulation for Natech events in chemical clusters," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Alsulieman, Abdullah & Ge, Xihe & Zeng, Zhiguo & Butenko, Sergiy & Khan, Faisal & El-Halwagi, Mahmoud, 2024. "Dynamic risk analysis of evolving scenarios in oil and gas separator," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Chahrour, Nour & Bérenguer, Christophe & Tacnet, Jean-Marc, 2024. "Incorporating cascading effects analysis in the maintenance policy assessment of torrent check dams against torrential floods," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Lan, Meng & Gardoni, Paolo & Weng, Wenguo & Shen, Kaixin & He, Zhichao & Pan, Rongliang, 2024. "Modeling the evolution of industrial accidents triggered by natural disasters using dynamic graphs: A case study of typhoon-induced domino accidents in storage tank areas," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Deng, Wanyi & Ma, Xiaoxue & Qiao, Weiliang, 2024. "A novel methodology to quantify the impact of safety barriers on maritime operational risk based on a probabilistic network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Ricci, Federica & Yang, Ming & Reniers, Genserik & Cozzani, Valerio, 2024. "Emergency response in cascading scenarios triggered by natural events," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Misuri, Alessio & Ricci, Federica & Sorichetti, Riccardo & Cozzani, Valerio, 2023. "The Effect of Safety Barrier Degradation on the Severity of Primary Natech Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    10. Nishino, Tomoaki & Miyashita, Takuya & Mori, Nobuhito, 2024. "Methodology for probabilistic tsunami-triggered oil spill fire hazard assessment based on Natech cascading disaster modeling," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    11. Ricci, Federica & Misuri, Alessio & Scarponi, Giordano Emrys & Cozzani, Valerio & Demichela, Micaela, 2024. "Vulnerability Assessment of Industrial Sites to Interface Fires and Wildfires," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Men, Jinkun & Chen, Guohua & Yang, Yunfeng & Reniers, Genserik, 2022. "An event-driven probabilistic methodology for modeling the spatial-temporal evolution of natural hazard-induced domino chain in chemical industrial parks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    13. Casson Moreno, Valeria & Marroni, Giulia & Landucci, Gabriele, 2022. "Probabilistic assessment aimed at the evaluation of escalating scenarios in process facilities combining safety and security barriers," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Yuan, Shuaiqi & Cai, Jitao & Reniers, Genserik & Yang, Ming & Chen, Chao & Wu, Jiansong, 2022. "Safety barrier performance assessment by integrating computational fluid dynamics and evacuation modeling for toxic gas leakage scenarios," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Misuri, Alessio & Ricci, Federica & Sorichetti, Riccardo & Cozzani, Valerio, 2023. "The Effect of Safety Barrier Degradation on the Severity of Primary Natech Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part II—Risk Assessment and Mitigation System," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    4. Yang, Yunfeng & Chen, Guohua & Reniers, Genserik, 2020. "Vulnerability assessment of atmospheric storage tanks to floods based on logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    5. Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    6. Tao Zeng & Guohua Chen & Yunfeng Yang & Genserik Reniers & Yixin Zhao & Xia Liu, 2020. "A Systematic Literature Review on Safety Research Related to Chemical Industrial Parks," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    7. Rossi, Lorenzo & Casson Moreno, Valeria & Landucci, Gabriele, 2022. "Vulnerability assessment of process pipelines affected by flood events," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2020. "Assessment of safety barrier performance in Natech scenarios," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Guo, Xiaoxue & Ding, Long & Ji, Jie & Cozzani, Valerio, 2022. "A cost-effective optimization model of safety investment allocation for risk reduction of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part I—Failure Analysis," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    11. Ricci, Federica & Misuri, Alessio & Scarponi, Giordano Emrys & Cozzani, Valerio & Demichela, Micaela, 2024. "Vulnerability Assessment of Industrial Sites to Interface Fires and Wildfires," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    13. Zhou, Lixing & Chen, Guohua & Zheng, Mianbin & Gao, Xiaoming & Luo, Chennan & Rao, Xiaohui, 2024. "Agent-based modeling methodology and temporal simulation for Natech events in chemical clusters," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Khakzad, Nima, 2023. "A goal programming approach to multi-objective optimization of firefighting strategies in the event of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    15. Weiliang Qiao & Enze Huang & Hongtongyang Guo & Yang Liu & Xiaoxue Ma, 2022. "Barriers Involved in the Safety Management Systems: A Systematic Review of Literature," IJERPH, MDPI, vol. 19(15), pages 1-35, August.
    16. Ricci, Federica & Yang, Ming & Reniers, Genserik & Cozzani, Valerio, 2024. "Emergency response in cascading scenarios triggered by natural events," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    17. Hou, Lei & Wu, Xingguang & Wu, Zhuang & Wu, Shouzhi, 2020. "Pattern identification and risk prediction of domino effect based on data mining methods for accidents occurred in the tank farm," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    18. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Khakzad, Nima & Van Gelder, Pieter, 2018. "Vulnerability of industrial plants to flood-induced natechs: A Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 403-411.
    20. Nima Khakzad & Gabriele Landucci & Genserik Reniers, 2017. "Application of Graph Theory to Cost‐Effective Fire Protection of Chemical Plants During Domino Effects," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1652-1667, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020307766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.