IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v143y2015icp63-73.html
   My bibliography  Save this article

Using graph theory to analyze the vulnerability of process plants in the context of cascading effects

Author

Listed:
  • Khakzad, Nima
  • Reniers, Genserik

Abstract

Dealing with large quantities of flammable and explosive materials, usually at high-pressure high-temperature conditions, makes process plants very vulnerable to cascading effects compared with other infrastructures. The combination of the extremely low frequency of cascading effects and the high complexity and interdependencies of process plants makes risk assessment and vulnerability analysis of process plants very challenging in the context of such events. In the present study, cascading effects were represented as a directed graph; accordingly, the efficacy of a set of graph metrics and measurements was examined in both unit and plant-wide vulnerability analysis of process plants. We demonstrated that vertex-level closeness and betweenness can be used in the unit vulnerability analysis of process plants for the identification of critical units within a process plant. Furthermore, the graph-level closeness metric can be used in the plant-wide vulnerability analysis for the identification of the most vulnerable plant layout with respect to the escalation of cascading effects. Furthermore, the results from the application of the graph metrics have been verified using a Bayesian network methodology.

Suggested Citation

  • Khakzad, Nima & Reniers, Genserik, 2015. "Using graph theory to analyze the vulnerability of process plants in the context of cascading effects," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 63-73.
  • Handle: RePEc:eee:reensy:v:143:y:2015:i:c:p:63-73
    DOI: 10.1016/j.ress.2015.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015001271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    2. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    3. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2013. "Risk-based design of process systems using discrete-time Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 5-17.
    4. Johansson, Jonas & Hassel, Henrik, 2010. "An approach for modelling interdependent infrastructures in the context of vulnerability analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1335-1344.
    5. Reniers, G.L.L. & Sörensen, K. & Khan, F. & Amyotte, P., 2014. "Resilience of chemical industrial areas through attenuation-based security," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 94-101.
    6. Khakzad, Nima, 2015. "Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 263-272.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Wu Jun & Yang Hui & Cheng Yuan, 2015. "Domino Effect Analysis, Assessment and Prevention in Process Industries," Journal of Systems Science and Information, De Gruyter, vol. 3(6), pages 481-498, December.
    3. Augutis, Juozas & Jokšas, Benas & Krikštolaitis, Ričardas & Urbonas, Rolandas, 2016. "The assessment technology of energy critical infrastructure," Applied Energy, Elsevier, vol. 162(C), pages 1494-1504.
    4. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    5. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    6. Guo, Qingjun & Amin, Shohel & Hao, Qianwen & Haas, Olivier, 2020. "Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    7. Nicholson, Charles D. & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 62-73.
    8. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.
    9. Adnan Sarwar & Faisal Khan & Majeed Abimbola & Lesley James, 2018. "Resilience Analysis of a Remote Offshore Oil and Gas Facility for a Potential Hydrocarbon Release," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1601-1617, August.
    10. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    11. Martin Folch-Calvo & Francisco Brocal-Fernández & Cristina González-Gaya & Miguel A. Sebastián, 2020. "Analysis and Characterization of Risk Methodologies Applied to Industrial Parks," Sustainability, MDPI, vol. 12(18), pages 1-35, September.
    12. Noroozi, Alireza & Khakzad, Nima & Khan, Faisal & MacKinnon, Scott & Abbassi, Rouzbeh, 2013. "The role of human error in risk analysis: Application to pre- and post-maintenance procedures of process facilities," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 251-258.
    13. Su, Huai & Zhang, Jinjun & Zio, Enrico & Yang, Nan & Li, Xueyi & Zhang, Zongjie, 2018. "An integrated systemic method for supply reliability assessment of natural gas pipeline networks," Applied Energy, Elsevier, vol. 209(C), pages 489-501.
    14. Mi, Jinhua & Li, Yan-Feng & Yang, Yuan-Jian & Peng, Weiwen & Huang, Hong-Zhong, 2016. "Reliability assessment of complex electromechanical systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 1-15.
    15. Aalirezaei, Armin & Kabir, Dr. Golam & Khan, Md Saiful Arif, 2023. "Dynamic predictive analysis of the consequences of gas pipeline failures using a Bayesian network," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
    16. Payuna Uday & Karen Marais, 2015. "Designing Resilient Systems‐of‐Systems: A Survey of Metrics, Methods, and Challenges," Systems Engineering, John Wiley & Sons, vol. 18(5), pages 491-510, October.
    17. Bellè, Andrea & Zeng, Zhiguo & Duval, Carole & Sango, Marc & Barros, Anne, 2022. "Modeling and vulnerability analysis of interdependent railway and power networks: Application to British test systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    18. Zhao, Chen & Li, Nan & Fang, Dongping, 2018. "Criticality assessment of urban interdependent lifeline systems using a biased PageRank algorithm and a multilayer weighted directed network model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 100-112.
    19. Senderov, S.M. & Vorobev, S.V., 2020. "Approaches to the identification of critical facilities and critical combinations of facilities in the gas industry in terms of its operability," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    20. KIM, Junyung & ZHAO, Xingang & SHAH, Asad Ullah Amin & KANG, Hyun Gook, 2021. "System risk quantification and decision making support using functional modeling and dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:143:y:2015:i:c:p:63-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.