IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v14y1994i2p169-182.html
   My bibliography  Save this article

Natural Disasters in the United States as Release Agents of Oil, Chemicals, or Radiological Materials Between 1980‐1989: Analysis and Recommendations

Author

Listed:
  • Pamela Sands Showalter
  • Mary Fran Myers

Abstract

Generally, hazards research and literature has treated natural and technological disasters as separate entities. This study attempts to determine how frequently interaction between these two types of disaster took place in the United States from 1980‐1989. Data were collected by performing a literature review, contacting organizations and individuals active in hazards research and mitigation, and through a questionnaire sent to the emergency management agencies of all 50 states. The consensus derived from the data is that the number of incidents where natural and technological disasters interact is rising while preparations, which recognize the complications inherent in such combined events, remain cursory. There is a pressing need for states to record, and make available to managers, information regarding the number of combined natural/technological events affecting their areas. Only when such data are available will it be possible to make appropriate decisions regarding the best way to reduce the effects of a natural disaster causing a catastrophic release of hazardous materials.

Suggested Citation

  • Pamela Sands Showalter & Mary Fran Myers, 1994. "Natural Disasters in the United States as Release Agents of Oil, Chemicals, or Radiological Materials Between 1980‐1989: Analysis and Recommendations," Risk Analysis, John Wiley & Sons, vol. 14(2), pages 169-182, April.
  • Handle: RePEc:wly:riskan:v:14:y:1994:i:2:p:169-182
    DOI: 10.1111/j.1539-6924.1994.tb00042.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1994.tb00042.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1994.tb00042.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Lixing & Chen, Guohua & Zheng, Mianbin & Gao, Xiaoming & Luo, Chennan & Rao, Xiaohui, 2024. "Agent-based modeling methodology and temporal simulation for Natech events in chemical clusters," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Jiajun Wang & Zhichao He & Wenguo Weng, 2020. "A review of the research into the relations between hazards in multi-hazard risk analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2003-2026, December.
    3. Sullivan, Daniel & Schmitt, Harrison J. & Calloway, Eric E. & Clausen, Whitney & Tucker, Pamela & Rayman, Jamie & Gerhardstein, Ben, 2021. "Chronic environmental contamination: A narrative review of psychosocial health consequences, risk factors, and pathways to community resilience," Social Science & Medicine, Elsevier, vol. 276(C).
    4. Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Lan, Meng & Gardoni, Paolo & Weng, Wenguo & Shen, Kaixin & He, Zhichao & Pan, Rongliang, 2024. "Modeling the evolution of industrial accidents triggered by natural disasters using dynamic graphs: A case study of typhoon-induced domino accidents in storage tank areas," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    7. Ricci, Federica & Yang, Ming & Reniers, Genserik & Cozzani, Valerio, 2024. "Emergency response in cascading scenarios triggered by natural events," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Kevin Summers & Andrea Lamper & Kyle Buck, 2021. "National Hazards Vulnerability and the Remediation, Restoration and Revitalization of Contaminated Sites—2. RCRA Sites," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    9. Misuri, Alessio & Ricci, Federica & Sorichetti, Riccardo & Cozzani, Valerio, 2023. "The Effect of Safety Barrier Degradation on the Severity of Primary Natech Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    10. Nicholas Santella & Laura J. Steinberg & Gloria Andrea Aguirra, 2011. "Empirical Estimation of the Conditional Probability of Natech Events Within the United States," Risk Analysis, John Wiley & Sons, vol. 31(6), pages 951-968, June.
    11. Samantha M. Samon & Diana Rohlman & Lane G. Tidwell & Peter D. Hoffman & Abiodun O. Oluyomi & Kim A. Anderson, 2022. "Associating Increased Chemical Exposure to Hurricane Harvey in a Longitudinal Panel Using Silicone Wristbands," IJERPH, MDPI, vol. 19(11), pages 1-15, May.
    12. George Halkos & Argyro Zisiadou, 2020. "An Overview of the Technological Environmental Hazards over the Last Century," Economics of Disasters and Climate Change, Springer, vol. 4(2), pages 411-428, July.
    13. Michael K. Lindell & Ronald W. Perry, 1997. "Hazardous Materials Releases in the Northridge Earthquake: Implications for Seismic Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 17(2), pages 147-156, April.
    14. Nishino, Tomoaki & Miyashita, Takuya & Mori, Nobuhito, 2024. "Methodology for probabilistic tsunami-triggered oil spill fire hazard assessment based on Natech cascading disaster modeling," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    15. Ricci, Federica & Misuri, Alessio & Scarponi, Giordano Emrys & Cozzani, Valerio & Demichela, Micaela, 2024. "Vulnerability Assessment of Industrial Sites to Interface Fires and Wildfires," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Men, Jinkun & Chen, Guohua & Yang, Yunfeng & Reniers, Genserik, 2022. "An event-driven probabilistic methodology for modeling the spatial-temporal evolution of natural hazard-induced domino chain in chemical industrial parks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:14:y:1994:i:2:p:169-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.