IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5753-d385793.html
   My bibliography  Save this article

A Systematic Literature Review on Safety Research Related to Chemical Industrial Parks

Author

Listed:
  • Tao Zeng

    (Institute of Safety Science & Engineering, South China University of Technology, Guangzhou 510640, China
    Guangdong Provincial Science and Technology Collaborative Innovation Center for Work Safety, Guangzhou 510640, China)

  • Guohua Chen

    (Institute of Safety Science & Engineering, South China University of Technology, Guangzhou 510640, China
    Guangdong Provincial Science and Technology Collaborative Innovation Center for Work Safety, Guangzhou 510640, China)

  • Yunfeng Yang

    (Institute of Safety Science & Engineering, South China University of Technology, Guangzhou 510640, China
    Guangdong Provincial Science and Technology Collaborative Innovation Center for Work Safety, Guangzhou 510640, China
    CEDON, KU Leuven, Campus Brussels, 1000 Brussels, Belgium)

  • Genserik Reniers

    (CEDON, KU Leuven, Campus Brussels, 1000 Brussels, Belgium
    Faculty of Technology, Policy and Management, Safety and Security Science Group (S3G), TU Delft, 2628 BX Delft, The Netherlands
    Faculty of Applied Economics, Antwerp Research Group on Safety and Security (ARGoSS), University of Antwerp, 2000 Antwerp, Belgium)

  • Yixin Zhao

    (Institute of Safety Science & Engineering, South China University of Technology, Guangzhou 510640, China
    Guangdong Provincial Science and Technology Collaborative Innovation Center for Work Safety, Guangzhou 510640, China)

  • Xia Liu

    (Guangdong Academy of Safety Science and Technology, Guangzhou 510060, China)

Abstract

The increasing demand for chemical products has driven the construction and development of chemical industrial areas, or so-called ‘chemical industrial parks’ (CIPs), but this has intrinsically raised the risk of major accidents. Therefore, it is significant and urgent to summarize the state of art and research needs in the field of CIP safety. In this paper, a keyword co-occurrence analysis of 116 scientific articles was conducted to support the classification of research topics in this field, then an overview of those research topics was presented to investigate the evolution of safety research with respect to CIPs. Specifically, the way that safety assessments are conducted, as well as how safety management and safety technology in such areas are classified and investigated, followed by detailed descriptions of representative methods and their contributions to CIP safety, are discussed. An integrated safety framework for CIPs is proposed to organize safety approaches and measures systematically. Based on the classification and analysis of studies on management, assessment, and technology related to CIP safety, the research trends and future directions and challenges are discussed and outlined. Those results are useful for improving theoretical method and industrial strategies, and can advance the safety and sustainability development of CIPs.

Suggested Citation

  • Tao Zeng & Guohua Chen & Yunfeng Yang & Genserik Reniers & Yixin Zhao & Xia Liu, 2020. "A Systematic Literature Review on Safety Research Related to Chemical Industrial Parks," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5753-:d:385793
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5753/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5753/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elisabeth Krausmann & Elisabetta Renni & Michela Campedel & Valerio Cozzani, 2011. "Industrial accidents triggered by earthquakes, floods and lightning: lessons learned from a database analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 285-300, October.
    2. Khakzad, Nima & Van Gelder, Pieter, 2018. "Vulnerability of industrial plants to flood-induced natechs: A Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 403-411.
    3. Chen, Chao & Reniers, Genserik & Khakzad, Nima, 2019. "Integrating safety and security resources to protect chemical industrial parks from man-made domino effects: A dynamic graph approach," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Yaguang Kong & Chenfeng Xie & Song Zheng & Peng Jiang & Meng Guan & Fang Wang, 2019. "Dynamic Early Warning Method for Major Hazard Installation Systems in Chemical Industrial Park," Complexity, Hindawi, vol. 2019, pages 1-18, May.
    5. Khakzad, Nima & Reniers, Genserik, 2015. "Using graph theory to analyze the vulnerability of process plants in the context of cascading effects," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 63-73.
    6. Yang, Yunfeng & Chen, Guohua & Reniers, Genserik, 2020. "Vulnerability assessment of atmospheric storage tanks to floods based on logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    7. Antonioni, Giacomo & Landucci, Gabriele & Necci, Amos & Gheorghiu, Diana & Cozzani, Valerio, 2015. "Quantitative assessment of risk due to NaTech scenarios caused by floods," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 334-345.
    8. Antonioni, Giacomo & Bonvicini, Sarah & Spadoni, Gigliola & Cozzani, Valerio, 2009. "Development of a framework for the risk assessment of Na-Tech accidental events," Reliability Engineering and System Safety, Elsevier, vol. 94(9), pages 1442-1450.
    9. Zhang, Laobing & Reniers, Genserik & Chen, Bin & Qiu, Xiaogang, 2019. "CCP game: A game theoretical model for improving the scheduling of chemical cluster patrolling," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2020. "Assessment of safety barrier performance in Natech scenarios," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    11. Janssens, Jochen & Talarico, Luca & Reniers, Genserik & Sörensen, Kenneth, 2015. "A decision model to allocate protective safety barriers and mitigate domino effects," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 44-52.
    12. Reniers, G.L.L. & Sörensen, K. & Khan, F. & Amyotte, P., 2014. "Resilience of chemical industrial areas through attenuation-based security," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 94-101.
    13. Khakzad, Nima & Reniers, Genserik & Abbassi, Rouzbeh & Khan, Faisal, 2016. "Vulnerability analysis of process plants subject to domino effects," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 127-136.
    14. Huan Cao & Tian Li & Shuxia Li & Tijun Fan, 2017. "An integrated emergency response model for toxic gas release accidents based on cellular automata," Annals of Operations Research, Springer, vol. 255(1), pages 617-638, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lidong Pan & Yu Zheng & Juan Zheng & Bin Xu & Guangzhe Liu & Min Wang & Dingding Yang, 2022. "Characteristics of Chemical Accidents and Risk Assessment Method for Petrochemical Enterprises Based on Improved FBN," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    2. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part I—Failure Analysis," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    3. Hyun Jeong Seo & Minjie Son & Ah Jeong Hong, 2021. "Trends in Civic Engagement Disaster Safety Education Research: Systematic Literature Review and Keyword Network Analysis," Sustainability, MDPI, vol. 13(5), pages 1-18, February.
    4. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    2. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Rossi, Lorenzo & Casson Moreno, Valeria & Landucci, Gabriele, 2022. "Vulnerability assessment of process pipelines affected by flood events," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Misuri, Alessio & Ricci, Federica & Sorichetti, Riccardo & Cozzani, Valerio, 2023. "The Effect of Safety Barrier Degradation on the Severity of Primary Natech Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Yang, Yunfeng & Chen, Guohua & Reniers, Genserik, 2020. "Vulnerability assessment of atmospheric storage tanks to floods based on logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    6. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    8. Guo, Xiaoxue & Ding, Long & Ji, Jie & Cozzani, Valerio, 2022. "A cost-effective optimization model of safety investment allocation for risk reduction of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part II—Risk Assessment and Mitigation System," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    10. Khakzad, Nima, 2023. "A goal programming approach to multi-objective optimization of firefighting strategies in the event of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    11. Li, Xiaofeng & Chen, Guohua & Amyotte, Paul & Khan, Faisal & Alauddin, Mohammad, 2023. "Vulnerability assessment of storage tanks exposed to simultaneous fire and explosion hazards," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Men, Jinkun & Chen, Guohua & Yang, Yunfeng & Reniers, Genserik, 2022. "An event-driven probabilistic methodology for modeling the spatial-temporal evolution of natural hazard-induced domino chain in chemical industrial parks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    13. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2020. "Assessment of safety barrier performance in Natech scenarios," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Zhou, Lixing & Chen, Guohua & Zheng, Mianbin & Gao, Xiaoming & Luo, Chennan & Rao, Xiaohui, 2024. "Agent-based modeling methodology and temporal simulation for Natech events in chemical clusters," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Casson Moreno, Valeria & Marroni, Giulia & Landucci, Gabriele, 2022. "Probabilistic assessment aimed at the evaluation of escalating scenarios in process facilities combining safety and security barriers," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    16. Nima Khakzad & Gabriele Landucci & Genserik Reniers, 2017. "Application of Graph Theory to Cost‐Effective Fire Protection of Chemical Plants During Domino Effects," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1652-1667, September.
    17. Chen, Chao & Reniers, Genserik & Khakzad, Nima, 2021. "A dynamic multi-agent approach for modeling the evolution of multi-hazard accident scenarios in chemical plants," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    18. Yuan, Shuaiqi & Cai, Jitao & Reniers, Genserik & Yang, Ming & Chen, Chao & Wu, Jiansong, 2022. "Safety barrier performance assessment by integrating computational fluid dynamics and evacuation modeling for toxic gas leakage scenarios," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    19. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part I—Failure Analysis," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    20. Lin Xie & Mary Ann Lundteigen & Yiliu Liu, 2020. "Reliability and barrier assessment of series–parallel systems subject to cascading failures," Journal of Risk and Reliability, , vol. 234(3), pages 455-469, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5753-:d:385793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.