Modelling framework for performance analysis of SIS subject to degradation due to proof tests
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2019.106702
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wu, Shengnan & Zhang, Laibin & Barros, Anne & Zheng, Wenpei & Liu, Yiliu, 2018. "Performance analysis for subsea blind shear ram preventers subject to testing strategies," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 281-298.
- Martorell, P. & Martón, I. & Sánchez, A.I. & Martorell, S., 2017. "Unavailability model for demand-caused failures of safety components addressing degradation by demand-induced stress, maintenance effectiveness and test efficiency," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 18-27.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Aibo & Hao, Songhua & Li, Peng & Xie, Min & Liu, Yiliu, 2022. "Performance modeling for condition-based activation of the redundant safety system subject to harmful tests," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
- Redutskiy Yury & Balycheva Marina & Dybdahl Hendrik, 2022. "Employee scheduling and maintenance planning for safety systems at the remotely located oil and gas industrial facilities," Engineering Management in Production and Services, Sciendo, vol. 14(4), pages 1-21, December.
- Redutskiy, Yury & Camitz-Leidland, Cecilie M. & Vysochyna, Anastasiia & Anderson, Kristanna T. & Balycheva, Marina, 2021. "Safety systems for the oil and gas industrial facilities: Design, maintenance policy choice, and crew scheduling," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
- Zhang, Aibo & Wu, Shengnan & Fan, Dongming & Xie, Min & Cai, Baoping & Liu, Yiliu, 2022. "Adaptive testing policy for multi-state systems with application to the degrading final elements in safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Zhang, Aibo & Srivastav, Himanshu & Barros, Anne & Liu, Yiliu, 2021. "Study of testing and maintenance strategies for redundant final elements in SIS with imperfect detection of degraded state," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
- Srivastav, Himanshu & Lundteigen, Mary Ann & Barros, Anne, 2021. "Introduction of degradation modeling in qualification of the novel subsea technology," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Aibo & Srivastav, Himanshu & Barros, Anne & Liu, Yiliu, 2021. "Study of testing and maintenance strategies for redundant final elements in SIS with imperfect detection of degraded state," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
- Wu, Shaomin & Do, Phuc, 2017. "Editorial," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 1-3.
- Zhang, Aibo & Zhang, Tieling & Barros, Anne & Liu, Yiliu, 2020. "Optimization of maintenances following proof tests for the final element of a safety-instrumented system," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
- Chen, Ying & Wang, Ze & Li, YingYi & Kang, Rui & Mosleh, Ali, 2018. "Reliability analysis of a cold-standby system considering the development stages and accumulations of failure mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 1-12.
- Lin, Zhixian & Tao, Longlong & Wang, Shaoxuan & Yong, Nuo & Xia, Dongqin & Wang, Jianye & Ge, Daochuan, 2024. "A subset simulation analysis framework for rapid reliability evaluation of series-parallel cold standby systems," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Wu, Shengnan & Zhang, Laibin & Zheng, Wenpei & Liu, Yiliu & Lundteigen, Mary Ann, 2019. "Reliability modeling of subsea SISs partial testing subject to delayed restoration," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Martón, I. & Sánchez, A.I. & Carlos, S. & Mullor, R. & Martorell, S., 2023. "Prognosis of wear-out effect on of safety equipment reliability for nuclear power plants long-term safe operation," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
- Zhang, Aibo & Wu, Shengnan & Fan, Dongming & Xie, Min & Cai, Baoping & Liu, Yiliu, 2022. "Adaptive testing policy for multi-state systems with application to the degrading final elements in safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Liu, Zengkai & Ma, Qiang & Cai, Baoping & Shi, Xuewei & Zheng, Chao & Liu, Yonghong, 2022. "Risk coupling analysis of subsea blowout accidents based on dynamic Bayesian network and NK model," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Thiago Lima de Barros & Rodrigo Sampaio Lopes, 2021. "Continuous improvement of imperfect maintenance actions in PAS and PAR models," Journal of Risk and Reliability, , vol. 235(5), pages 941-958, October.
- Martorell, S. & Martón, I. & Sánchez, A. & Carlos, S., 2020. "Harmonisation of surveillance requirements and maintenance in a context of ageing and obsolescence based on reliability, availability and risk information," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Wu, Shengnan & Zhang, Qiao & Li, Bin & Zhang, Laibin & Zheng, Wenpei & Li, Zhong & Li, Zhandong & Liu, Yiliu, 2023. "Reliability analysis of subsea wellhead system subject to fatigue and degradation during service life," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Srivastav, Himanshu & Lundteigen, Mary Ann & Barros, Anne, 2021. "Introduction of degradation modeling in qualification of the novel subsea technology," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Sakurahara, Tatsuya & O'Shea, Nicholas & Cheng, Wen-Chi & Zhang, Sai & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Integrating renewal process modeling with Probabilistic Physics-of-Failure: Application to Loss of Coolant Accident (LOCA) frequency estimations in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
More about this item
Keywords
SIS Under degradation; Performance analysis; Harm full tests; Hidden degradation; Imperfect testing; Multi-phase Markov process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:195:y:2020:i:c:s0951832019301450. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.