Forecasting Bitcoin with technical analysis: A not-so-random forest?
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2021.08.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017.
"Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500,"
European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2016. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," FAU Discussion Papers in Economics 03/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Christopher Krauss & Xuan Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01515120, HAL.
- Dimitrios Koutmos, 2020. "Market risk and Bitcoin returns," Annals of Operations Research, Springer, vol. 294(1), pages 453-477, November.
- Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019.
"Bitcoin price forecasting with neuro-fuzzy techniques,"
European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
- George S. Atsalakis & Ioanna G. Atsalaki & Fotios Pasiouras & Constantin Zopounidis, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," Post-Print hal-02879928, HAL.
- Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2018.
"On the determinants of bitcoin returns: A LASSO approach,"
Finance Research Letters, Elsevier, vol. 27(C), pages 235-240.
- Theodore Panagiotidis & Thanasis Stengos & Orestis Vravosinos, 2018. "On the determinants of bitcoin returns: a LASSO approach," Working Paper series 18-14, Rimini Centre for Economic Analysis.
- Donaldson, R. Glen & Kamstra, Mark, 1997. "An artificial neural network-GARCH model for international stock return volatility," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 17-46, January.
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CIRJE F-Series CIRJE-F-1078, CIRJE, Faculty of Economics, University of Tokyo.
- Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994.
"A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks,"
Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
- James M. Hutchinson & Andrew W. Lo & Tomaso Poggio, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Learning Networks," NBER Working Papers 4718, National Bureau of Economic Research, Inc.
- Jing Yang & Nikola Gradojevic, 2006. "Non-linear, non-parametric, non-fundamental exchange rate forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 227-245.
- Baig, Ahmed & Blau, Benjamin M. & Sabah, Nasim, 2019. "Price clustering and sentiment in bitcoin," Finance Research Letters, Elsevier, vol. 29(C), pages 111-116.
- Yang, Z. R. & Platt, Marjorie B. & Platt, Harlan D., 1999. "Probabilistic Neural Networks in Bankruptcy Prediction," Journal of Business Research, Elsevier, vol. 44(2), pages 67-74, February.
- Demir, Ender & Gozgor, Giray & Lau, Chi Keung Marco & Vigne, Samuel A., 2018. "Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation," Finance Research Letters, Elsevier, vol. 26(C), pages 145-149.
- Kaucic, Massimiliano, 2010. "Investment using evolutionary learning methods and technical rules," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1717-1727, December.
- Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2018. "Datestamping the Bitcoin and Ethereum bubbles," Finance Research Letters, Elsevier, vol. 26(C), pages 81-88.
- Zivot, Eric & Andrews, Donald W K, 2002.
"Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
- Zivot, Eric & Andrews, Donald W K, 1992. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 251-270, July.
- Eric Zivot & Donald W.K. Andrews, 1990. "Further Evidence on the Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Cowles Foundation Discussion Papers 944, Cowles Foundation for Research in Economics, Yale University.
- Tom Doan, "undated". "ZIVOT: RATS procedure to perform Zivot-Andrews Unit Root Test," Statistical Software Components RTS00236, Boston College Department of Economics.
- Christian M Hafner, 2020.
"Testing for Bubbles in Cryptocurrencies with Time-Varying Volatility,"
Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 233-249.
- HAFNER Christian,, 2018. "Testing for bubbles in cryptocurrencies with time-varying volatility," LIDAM Discussion Papers CORE 2018019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hafner, Christian M., 2018. "Testing for bubbles in cryptocurrencies with time-varying volatility," IRTG 1792 Discussion Papers 2018-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Hafner, Christian, 2018. "Testing for Bubbles in Cryptocurrencies with Time-Varying Volatility," LIDAM Reprints ISBA 2018045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Christian M. Hafner, 2018. "Testing for bubbles in cryptocurrencies with time-varying volatility," LIDAM Reprints CORE 3025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Kang, Sang Hoon & McIver, Ron P. & Hernandez, Jose Arreola, 2019.
"Co-movements between Bitcoin and Gold: A wavelet coherence analysis,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
- Sang Hoon Kang & Ron Mciver & Jose Arreola Hernandez, 2019. "Co-movements between Bitcoin and Gold: A wavelet coherence analysis," Post-Print hal-02468160, HAL.
- Georgios Sermpinis & Andreas Karathanasopoulos & Rafael Rosillo & David Fuente, 2021. "Neural networks in financial trading," Annals of Operations Research, Springer, vol. 297(1), pages 293-308, February.
- Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014.
"Forecasting the Equity Risk Premium: The Role of Technical Indicators,"
Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2011. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Working Papers CoFie-02-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Khuntia, Sashikanta & Pattanayak, J.K., 2018. "Adaptive market hypothesis and evolving predictability of bitcoin," Economics Letters, Elsevier, vol. 167(C), pages 26-28.
- Hsieh, David A, 1989. "Testing for Nonlinear Dependence in Daily Foreign Exchange Rates," The Journal of Business, University of Chicago Press, vol. 62(3), pages 339-368, July.
- Blake, Andrew P. & Kapetanios, George, 2000.
"A radial basis function artificial neural network test for ARCH,"
Economics Letters, Elsevier, vol. 69(1), pages 15-23, October.
- Andrew Blake, 1999. "A Radial Basis Function Artificial Neural Network Test for ARCH," National Institute of Economic and Social Research (NIESR) Discussion Papers 154, National Institute of Economic and Social Research.
- Wittkemper, Hans-Georg & Steiner, Manfred, 1996. "Using neural networks to forecast the systematic risk of stocks," European Journal of Operational Research, Elsevier, vol. 90(3), pages 577-588, May.
- Nada Mselmi & Amine Lahiani & Taher Hamza, 2017. "Financial distress prediction: The case of French small and medium-sized firms," Post-Print hal-03529325, HAL.
- Fernandez-Rodriguez, Fernando & Gonzalez-Martel, Christian & Sosvilla-Rivero, Simon, 2000.
"On the profitability of technical trading rules based on artificial neural networks:: Evidence from the Madrid stock market,"
Economics Letters, Elsevier, vol. 69(1), pages 89-94, October.
- Fernando Fernández-Rodríguez & Christian González-Martel* & Simón Sosvilla-Rivero, "undated". "On the profitability of technical trading rules based on arifitial neural networks : evidence from the Madrid stock market," Working Papers 99-07, FEDEA.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016.
"Do We Need High Frequency Data to Forecast Variances?,"
Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
- Denisa Banulescu-Radu & Christophe Hurlin & Sebastien Laurent & Bertrand Candelon, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-03528839, HAL.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Thies, Sven & Molnár, Peter, 2018. "Bayesian change point analysis of Bitcoin returns," Finance Research Letters, Elsevier, vol. 27(C), pages 223-227.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- Gradojevic, Nikola & Gençay, Ramazan, 2013. "Fuzzy logic, trading uncertainty and technical trading," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 578-586.
- Gerritsen, Dirk F. & Bouri, Elie & Ramezanifar, Ehsan & Roubaud, David, 2020. "The profitability of technical trading rules in the Bitcoin market," Finance Research Letters, Elsevier, vol. 34(C).
- Bouri, Elie & Lau, Chi Keung Marco & Lucey, Brian & Roubaud, David, 2019. "Trading volume and the predictability of return and volatility in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 29(C), pages 340-346.
- Menkhoff, Lukas, 1997. "Examining the Use of Technical Currency Analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 2(4), pages 307-318, October.
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CARF F-Series CARF-F-430, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Elie Bouri & Luis A. Gil‐Alana & Rangan Gupta & David Roubaud, 2019.
"Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 412-426, January.
- Elie Bouri & Luis A. Gil-Alana & Rangan Gupta & David Roubaud, 2016. "Modelling Long Memory Volatility in the Bitcoin Market: Evidence of Persistence and Structural Breaks," Working Papers 201654, University of Pretoria, Department of Economics.
- Franses Philip Hans & van Griensven Kasper, 1998. "Forecasting Exchange Rates Using Neural Networks for Technical Trading Rules," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-8, January.
- Taylor, Mark P. & Allen, Helen, 1992. "The use of technical analysis in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 11(3), pages 304-314, June.
- Alla A. Petukhina & Raphael C. G. Reule & Wolfgang Karl Härdle, 2021.
"Rise of the machines? Intraday high-frequency trading patterns of cryptocurrencies,"
The European Journal of Finance, Taylor & Francis Journals, vol. 27(1-2), pages 8-30, January.
- Petukhina, Alla A. & Reule, Raphael C. G. & Härdle, Wolfgang Karl, 2019. "Rise of the Machines? Intraday High-Frequency Trading Patterns of Cryptocurrencies," IRTG 1792 Discussion Papers 2019-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Alla A. Petukhina & Raphael C. G. Reule & Wolfgang Karl Hardle, 2020. "Rise of the Machines? Intraday High-Frequency Trading Patterns of Cryptocurrencies," Papers 2009.04200, arXiv.org.
- Corbet, Shaen & Eraslan, Veysel & Lucey, Brian & Sensoy, Ahmet, 2019. "The effectiveness of technical trading rules in cryptocurrency markets," Finance Research Letters, Elsevier, vol. 31(C), pages 32-37.
- Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
- Mselmi, Nada & Lahiani, Amine & Hamza, Taher, 2017. "Financial distress prediction: The case of French small and medium-sized firms," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 67-80.
- Heinemann, Maik, 2000. "Adaptive learning of rational expectations using neural networks," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 1007-1026, June.
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CARF F-Series CARF-F-441, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Sermpinis, Georgios & Theofilatos, Konstantinos & Karathanasopoulos, Andreas & Georgopoulos, Efstratios F. & Dunis, Christian, 2013. "Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization," European Journal of Operational Research, Elsevier, vol. 225(3), pages 528-540.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017.
"Can volume predict Bitcoin returns and volatility? A quantiles-based approach,"
Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
- Mehmet Balcilar & Elie Bouri & Rangan Gupta & David Roubaud, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Post-Print hal-02008551, HAL.
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin Technical Trading with Articial Neural Network," CIRJE F-Series CIRJE-F-1090, CIRJE, Faculty of Economics, University of Tokyo.
- Garcia, Rene & Gencay, Ramazan, 2000.
"Pricing and hedging derivative securities with neural networks and a homogeneity hint,"
Journal of Econometrics, Elsevier, vol. 94(1-2), pages 93-115.
- René Garcia & Ramazan Gençay, 1998. "Pricing and Hedging Derivative Securities with Neural Networks and a Homogeneity Hint," CIRANO Working Papers 98s-35, CIRANO.
- Nikolay Miller & Yiming Yang & Bruce Sun & Guoyi Zhang, 2019. "Identification of technical analysis patterns with smoothing splines for bitcoin prices," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(12), pages 2289-2297, September.
- Nada Mselmi & Amine Lahiani & Taher Hamza, 2017. "Financial distress prediction: The case of French small and medium-sized firms," Post-Print hal-03380580, HAL.
- Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
- James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
- Liu, Weiyi & Liang, Xuan & Cui, Guowei, 2020. "Common risk factors in the returns on cryptocurrencies," Economic Modelling, Elsevier, vol. 86(C), pages 299-305.
- S. D. Bekiros & D. A. Georgoutsos, 2008.
"Direction-of-change forecasting using a volatility-based recurrent neural network,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 407-417.
- Bekiros, S. & Georgoutsos, D., 2006. "Direction-of-Change Forecasting using a Volatility- Based Recurrent Neural Network," CeNDEF Working Papers 06-16, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
- James H. Stock & Mark W. Watson, 2007. "Erratum to “Why Has U.S. Inflation Become Harder to Forecast?”," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
- Geuder, Julian & Kinateder, Harald & Wagner, Niklas F., 2019. "Cryptocurrencies as financial bubbles: The case of Bitcoin," Finance Research Letters, Elsevier, vol. 31(C).
- Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
- C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
- Menkhoff, Lukas, 2010.
"The use of technical analysis by fund managers: International evidence,"
Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2573-2586, November.
- Menkhoff, Lukas, 2010. "The Use of Technical Analysis by Fund Managers: International Evidence," Hannover Economic Papers (HEP) dp-446, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
- Vytautas Karalevicius & Niels Degrande & Jochen De Weerdt, 2018. "Using sentiment analysis to predict interday Bitcoin price movements," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 19(1), pages 56-75, December.
- Geppert, John M. & Ivanov, Stoyu I. & Karels, Gordon V., 2010. "Analysis of the probability of deletion of S&P 500 companies: Survival analysis and neural networks approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 191-201, May.
- Nikola Gradojevic & Ramazan Gencay & Dragan Kukolj, 2009. "Option Pricing with Modular Neural Networks," Working Paper series 32_09, Rimini Centre for Economic Analysis.
- Lahmiri, Salim & Bekiros, Stelios, 2019. "Cryptocurrency forecasting with deep learning chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 35-40.
- Chen, Wei & Xu, Huilin & Jia, Lifen & Gao, Ying, 2021. "Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants," International Journal of Forecasting, Elsevier, vol. 37(1), pages 28-43.
- Franses, Philip Hans & Draisma, Gerrit, 1997. "Recognizing changing seasonal patterns using artificial neural networks," Journal of Econometrics, Elsevier, vol. 81(1), pages 273-280, November.
- Nakano, Masafumi & Takahashi, Akihiko & Takahashi, Soichiro, 2018. "Bitcoin technical trading with artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 587-609.
- James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- Adcock, Robert & Gradojevic, Nikola, 2019. "Non-fundamental, non-parametric Bitcoin forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Thierry Warin & Aleksandar Stojkov, 2021. "Machine Learning in Finance: A Metadata-Based Systematic Review of the Literature," JRFM, MDPI, vol. 14(7), pages 1-31, July.
- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
- Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
- Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
- Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
- Chen, Rui & Ren, Jinjuan, 2022. "Do AI-powered mutual funds perform better?," Finance Research Letters, Elsevier, vol. 47(PA).
- Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
- Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
- Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
- Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023.
"Forecasting mid-price movement of Bitcoin futures using machine learning,"
Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
- Akyildirim, Erdinc & Cepni, Oguzhan & Corbet, Shaen & Uddin, Gazi Salah, 2020. "Forecasting Mid-price Movement of Bitcoin Futures Using Machine Learning," Working Papers 20-2020, Copenhagen Business School, Department of Economics.
- Tapia, Sebastian & Kristjanpoller, Werner, 2022. "Framework based on multiplicative error and residual analysis to forecast bitcoin intraday-volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
- Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021.
"Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
- Aurelio F. Bariviera & Ignasi Merediz-Sol`a, 2020. "Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis," Papers 2003.09723, arXiv.org.
- R. K. Jana & Indranil Ghosh & Debojyoti Das, 2021. "A differential evolution-based regression framework for forecasting Bitcoin price," Annals of Operations Research, Springer, vol. 306(1), pages 295-320, November.
- Qiutong Guo & Shun Lei & Qing Ye & Zhiyang Fang, 2021. "MRC-LSTM: A Hybrid Approach of Multi-scale Residual CNN and LSTM to Predict Bitcoin Price," Papers 2105.00707, arXiv.org.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021.
"Is It Possible to Forecast the Price of Bitcoin?,"
Forecasting, MDPI, vol. 3(2), pages 1-44, May.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-04250269, HAL.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Post-Print halshs-04250269, HAL.
- Bouri, Elie & Lau, Chi Keung Marco & Saeed, Tareq & Wang, Shixuan & Zhao, Yuqian, 2021. "On the intraday return curves of Bitcoin: Predictability and trading opportunities," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019.
"The effects of markets, uncertainty and search intensity on bitcoin returns,"
International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
- Theodore Panagiotidis & Thanasis Stengos & Orestis Vravosinos, 2018. "The effects of markets, uncertainty and search intensity on bitcoin returns," Working Paper series 18-39, Rimini Centre for Economic Analysis.
- Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
More about this item
Keywords
Bitcoin; Deep learning; Random forest; Forecasting; Technical analysis; Market sentiment;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:39:y:2023:i:1:p:1-17. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.