Bitcoin technical trading with artificial neural network
Author
Abstract
Suggested Citation
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.
References listed on IDEAS
- Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," Papers 1710.07030, arXiv.org, revised Mar 2019.
- Young Bin Kim & Jun Gi Kim & Wook Kim & Jae Ho Im & Tae Hyeong Kim & Shin Jin Kang & Chang Hun Kim, 2016. "Predicting Fluctuations in Cryptocurrency Transactions Based on User Comments and Replies," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-17, August.
- Marie Briere & Kim Oosterlinck & Ariane Szafarz, 2015.
"Virtual Currency, Tangible Return: Portfolio Diversification with Bitcoins,"
Post-Print CEB, ULB -- Universite Libre de Bruxelles, vol. 16(6), pages 365-373.
- Marie Briere & Kim Oosterlinck & Ariane Szafarz, 2013. "Virtual Currency, Tangible Return: Portfolio Diversification with Bitcoin," Working Papers CEB 13-031, ULB -- Universite Libre de Bruxelles.
- Marie Brière & Kim Oosterlinck & Ariane Szafarz, 2015. "Virtual Currency, Tangible Return: Portfolio Diversification with Bitcoin," Post-Print hal-02315410, HAL.
- Marie Briere & Kim Oosterlinck & Ariane Szafarz, 2015. "Virtual Currency, Tangible Return: Portfolio Diversification with Bitcoins," ULB Institutional Repository 2013/226296, ULB -- Universite Libre de Bruxelles.
- KiHoon Hong, 2017. "Bitcoin as an alternative investment vehicle," Information Technology and Management, Springer, vol. 18(4), pages 265-275, December.
- Masafumi Nakano & Akihiko Takahashi & Muhammad Soichiro Takahashi, 2017. "Creating Investment Scheme with State Space Modeling," CIRJE F-Series CIRJE-F-1038, CIRJE, Faculty of Economics, University of Tokyo.
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2017. "Creating Investment Scheme with State Space Modeling," CARF F-Series cf406, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
- KiHoon Hong, 0. "Bitcoin as an alternative investment vehicle," Information Technology and Management, Springer, vol. 0, pages 1-11.
- Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," CIRJE F-Series CIRJE-F-1069, CIRJE, Faculty of Economics, University of Tokyo.
- Huck, Nicolas, 2010. "Pairs trading and outranking: The multi-step-ahead forecasting case," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1702-1716, December.
- Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," CARF F-Series CARF-F-423, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CIRJE F-Series CIRJE-F-1078, CIRJE, Faculty of Economics, University of Tokyo.
- Nakano, Masafumi & Takahashi, Akihiko & Takahashi, Soichiro, 2018. "Bitcoin technical trading with artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 587-609.
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin Technical Trading with Articial Neural Network," CIRJE F-Series CIRJE-F-1090, CIRJE, Faculty of Economics, University of Tokyo.
- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- Aniruddha Dutta & Saket Kumar & Meheli Basu, 2020. "A Gated Recurrent Unit Approach to Bitcoin Price Prediction," JRFM, MDPI, vol. 13(2), pages 1-16, February.
- Masafumi Nakano & Akihiko Takahashi, 2019. "A New Investment Method with AutoEncoder: Applications to Cryptocurrencies," CIRJE F-Series CIRJE-F-1128, CIRJE, Faculty of Economics, University of Tokyo.
- Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
- Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019.
"The effects of markets, uncertainty and search intensity on bitcoin returns,"
International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
- Theodore Panagiotidis & Thanasis Stengos & Orestis Vravosinos, 2018. "The effects of markets, uncertainty and search intensity on bitcoin returns," Working Paper series 18-39, Rimini Centre for Economic Analysis.
- Klarin, Anton, 2020. "The decade-long cryptocurrencies and the blockchain rollercoaster: Mapping the intellectual structure and charting future directions," Research in International Business and Finance, Elsevier, vol. 51(C).
- Rubaiyat Ahsan Bhuiyan & Afzol Husain & Changyong Zhang, 2023. "Diversification evidence of bitcoin and gold from wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.
- Philipp Grohs & Fabian Hornung & Arnulf Jentzen & Philippe von Wurstemberger, 2018. "A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations," Papers 1809.02362, arXiv.org, revised Jan 2023.
- Melisa Ozdamar & Levent Akdeniz & Ahmet Sensoy, 2021. "Lottery-like preferences and the MAX effect in the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
- Sifat, Imtiaz Mohammad & Mohamad, Azhar & Mohamed Shariff, Mohammad Syazwan Bin, 2019. "Lead-Lag relationship between Bitcoin and Ethereum: Evidence from hourly and daily data," Research in International Business and Finance, Elsevier, vol. 50(C), pages 306-321.
- Aniruddha Dutta & Saket Kumar & Meheli Basu, 2019. "A Gated Recurrent Unit Approach to Bitcoin Price Prediction," Papers 1912.11166, arXiv.org.
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "State Space Approach to Adaptive Artificial Intelligence Modeling: Application to Financial Portfolio with Fuzzy System," CARF F-Series CARF-F-422, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Jin, Changlun & Tian, Xiujuan, 2024. "Enhanced safe-haven status of Bitcoin: Evidence from the Silicon Valley Bank collapse," Finance Research Letters, Elsevier, vol. 59(C).
- Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
- Corbet, Shaen & Katsiampa, Paraskevi & Lau, Chi Keung Marco, 2020. "Measuring quantile dependence and testing directional predictability between Bitcoin, altcoins and traditional financial assets," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Bouri, Elie & Gupta, Rangan & Lahiani, Amine & Shahbaz, Muhammad, 2018.
"Testing for asymmetric nonlinear short- and long-run relationships between bitcoin, aggregate commodity and gold prices,"
Resources Policy, Elsevier, vol. 57(C), pages 224-235.
- Elie Bouri & Rangan Gupta & Amine Lahiani & Muhammad Shahbaz, 2017. "Testing for Asymmetric Nonlinear Short- and Long-Run Relationships between Bitcoin, Aggregate Commodity and Gold Prices," Working Papers 201760, University of Pretoria, Department of Economics.
- Elie Bouri & Rangan Gupta & Amine Lahiani & Muhammad Shahbaz, 2018. "Testing for asymmetric nonlinear short- and long-run relationships between bitcoin, aggregate commodity and gold prices," Post-Print hal-03533197, HAL.
- Ting-Hsuan Chen & Mu-Yen Chen & Guan-Ting Du, 2021. "The Determinants of Bitcoin’s Price: Utilization of GARCH and Machine Learning Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 267-280, January.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2018-03-19 (Big Data)
- NEP-CMP-2018-03-19 (Computational Economics)
- NEP-PAY-2018-03-19 (Payment Systems and Financial Technology)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf430. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/catokjp.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.