Trading volume and the predictability of return and volatility in the cryptocurrency market
Author
Abstract
Suggested Citation
DOI: 10.1016/j.frl.2018.08.015
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lee, Tae-Hwy & Yang, Weiping, 2014.
"Granger-causality in quantiles between financial markets: Using copula approach,"
International Review of Financial Analysis, Elsevier, vol. 33(C), pages 70-78.
- Tae-Hwy Lee & Weiping Yang, 2014. "Granger-Causality in Quantiles between Financial Markets: Using Copula Approach," Working Papers 201406, University of California at Riverside, Department of Economics.
- Gebka, Bartosz & Wohar, Mark E., 2013. "Causality between trading volume and returns: Evidence from quantile regressions," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 144-159.
- Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017.
"Can volume predict Bitcoin returns and volatility? A quantiles-based approach,"
Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
- Mehmet Balcilar & Elie Bouri & Rangan Gupta & David Roubaud, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Post-Print hal-02008551, HAL.
- Gandal, Neil & Hamrick, JT & Moore, Tyler & Oberman, Tali, 2018.
"Price manipulation in the Bitcoin ecosystem,"
Journal of Monetary Economics, Elsevier, vol. 95(C), pages 86-96.
- Gandal, Neil & Oberman, Tali & Moore, Tyler & Hamrick, JT, 2017. "Price Manipulation in the Bitcoin Ecosystem," CEPR Discussion Papers 12061, C.E.P.R. Discussion Papers.
- Ning, Cathy & Wirjanto, Tony S., 2009.
"Extreme return-volume dependence in East-Asian stock markets: A copula approach,"
Finance Research Letters, Elsevier, vol. 6(4), pages 202-209, December.
- Cathy Ning & Tony S. Wirjanto, 2008. "Extreme Return-Volume Dependence in East-Asian Stock Markets: A Copula Approach," Working Papers 08009, University of Waterloo, Department of Economics.
- Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
- Bouri, Elie & Gupta, Rangan & Lau, Chi Keung Marco & Roubaud, David & Wang, Shixuan, 2018.
"Bitcoin and global financial stress: A copula-based approach to dependence and causality in the quantiles,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 297-307.
- Elie Bouri & Rangan Gupta & Chi Keung Marco Lau & David Roubaud & Shixuan Wang, 2017. "Bitcoin and Global Financial Stress: A Copula-Based Approach to Dependence and Causality-in-Quantiles," Working Papers 201750, University of Pretoria, Department of Economics.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jareño, Francisco & González, María de la O & Tolentino, Marta & Sierra, Karen, 2020. "Bitcoin and gold price returns: A quantile regression and NARDL analysis," Resources Policy, Elsevier, vol. 67(C).
- Elie Bouri & Rangan Gupta & Chi keung marco Lau & David Roubaud, 2021. "Risk aversion and Bitcoin returns in extreme quantiles," Economics Bulletin, AccessEcon, vol. 41(3), pages 1374-1386.
- Zhou, Siwen, 2018. "Exploring the Driving Forces of the Bitcoin Exchange Rate Dynamics: An EGARCH Approach," MPRA Paper 89445, University Library of Munich, Germany.
- Mokni, Khaled & Ajmi, Ahdi Noomen, 2021. "Cryptocurrencies vs. US dollar: Evidence from causality in quantiles analysis," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 238-252.
- Kao, Yu-Sheng & Zhao, Kai & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2024. "The asymmetric relationships between the Bitcoin futures’ return, volatility, and trading volume," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 524-542.
- Hau, Liya & Zhu, Huiming & Shahbaz, Muhammad & Sun, Wuqin, 2021. "Does transaction activity predict Bitcoin returns? Evidence from quantile-on-quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
- Corbet, Shaen & Katsiampa, Paraskevi & Lau, Chi Keung Marco, 2020. "Measuring quantile dependence and testing directional predictability between Bitcoin, altcoins and traditional financial assets," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2021. "Bitcoin versus high-performance technology stocks in diversifying against global stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
- Ngene, Geoffrey M. & Mungai, Ann Nduati, 2022. "Stock returns, trading volume, and volatility: The case of African stock markets," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Costantini, Mauro & Maaitah, Ahmad & Mishra, Tapas & Sousa, Ricardo M., 2023. "Bitcoin market networks and cyberattacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- Saif Siddiqui & Preeti Roy, 2019. "Asymmetric relationship between implied volatility, index returns and trading volume: an application of quantile regression model," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 46(3), pages 239-252, September.
- Pengfei Wang & Wei Zhang & Xiao Li & Dehua Shen, 2019. "Trading volume and return volatility of Bitcoin market: evidence for the sequential information arrival hypothesis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(2), pages 377-418, June.
- Guglielmo Maria Caporale & Woo-Young Kang, 2020. "Bitcoin Price Co-Movements and Culture," CESifo Working Paper Series 8076, CESifo.
- Naeem, Muhammad & Bouri, Elie & Boako, Gideon & Roubaud, David, 2020. "Tail dependence in the return-volume of leading cryptocurrencies," Finance Research Letters, Elsevier, vol. 36(C).
- Tiwari, Aviral Kumar & Adewuyi, Adeolu O. & Albulescu, Claudiu T. & Wohar, Mark E., 2020. "Empirical evidence of extreme dependence and contagion risk between main cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
- Khalid Khan & Jiluo Sun & Sinem Derindere Koseoglu & Ashfaq U. Rehman, 2021. "Revisiting Bitcoin Price Behavior Under Global Economic Uncertainty," SAGE Open, , vol. 11(3), pages 21582440211, August.
- Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
- Jalan, Akanksha & Matkovskyy, Roman & Yarovaya, Larisa, 2021.
"“Shiny” crypto assets: A systemic look at gold-backed cryptocurrencies during the COVID-19 pandemic,"
International Review of Financial Analysis, Elsevier, vol. 78(C).
- Akanksha Jalan & Roman Matkovskyy & Larisa Yarovaya, 2021. "“Shiny” crypto assets: A systemic look at gold-backed cryptocurrencies during the COVID-19 pandemic," Post-Print hal-03512893, HAL.
- Aggarwal, Divya & Chandrasekaran, Shabana & Annamalai, Balamurugan, 2020. "A complete empirical ensemble mode decomposition and support vector machine-based approach to predict Bitcoin prices," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
More about this item
Keywords
Trading volume; Return; Volatility; Cryptocurrency; Copula-quantile causality;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:29:y:2019:i:c:p:340-346. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.