IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.04200.html
   My bibliography  Save this paper

Rise of the Machines? Intraday High-Frequency Trading Patterns of Cryptocurrencies

Author

Listed:
  • Alla A. Petukhina
  • Raphael C. G. Reule
  • Wolfgang Karl Hardle

Abstract

This research analyses high-frequency data of the cryptocurrency market in regards to intraday trading patterns related to algorithmic trading and its impact on the European cryptocurrency market. We study trading quantitatives such as returns, traded volumes, volatility periodicity, and provide summary statistics of return correlations to CRIX (CRyptocurrency IndeX), as well as respective overall high-frequency based market statistics with respect to temporal aspects. Our results provide mandatory insight into a market, where the grand scale employment of automated trading algorithms and the extremely rapid execution of trades might seem to be a standard based on media reports. Our findings on intraday momentum of trading patterns lead to a new quantitative view on approaching the predictability of economic value in this new digital market.

Suggested Citation

  • Alla A. Petukhina & Raphael C. G. Reule & Wolfgang Karl Hardle, 2020. "Rise of the Machines? Intraday High-Frequency Trading Patterns of Cryptocurrencies," Papers 2009.04200, arXiv.org.
  • Handle: RePEc:arx:papers:2009.04200
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.04200
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Guglielmo Caporale & Luis Gil-Alana & Alex Plastun & Inna Makarenko, 2016. "Intraday Anomalies and Market Efficiency: A Trading Robot Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 47(2), pages 275-295, February.
    2. Matthias Schnaubelt & Jonas Rende & Christopher Krauss, 2019. "Testing Stylized Facts of Bitcoin Limit Order Books," JRFM, MDPI, vol. 12(1), pages 1-30, February.
    3. Kari Harju & Syed Mujahid Hussain, 2011. "Intraday Seasonalities and Macroeconomic News Announcements," European Financial Management, European Financial Management Association, vol. 17(2), pages 367-390, March.
    4. Gayatri Tilak & Tamas Szell & Remy Chicheportiche & Anirban Chakraborti, 2012. "Study of statistical correlations in intraday and daily financial return time series," Papers 1204.5103, arXiv.org.
    5. Gourieroux, Christian & Jasiak, Joanna & Le Fol, Gaelle, 1999. "Intra-day market activity," Journal of Financial Markets, Elsevier, vol. 2(3), pages 193-226, August.
    6. Alla Petukhina & Simon Trimborn & Wolfgang Karl Härdle & Hermann Elendner, 2021. "Investing with cryptocurrencies – evaluating their potential for portfolio allocation strategies," Quantitative Finance, Taylor & Francis Journals, vol. 21(11), pages 1825-1853, November.
    7. Caporale, Guglielmo Maria & Plastun, Alex, 2019. "The day of the week effect in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 31(C).
    8. Syed Basher & Perry Sadorsky, 2006. "Day-of-the-week effects in emerging stock markets," Applied Economics Letters, Taylor & Francis Journals, vol. 13(10), pages 621-628.
    9. Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl & Klochkov, Yegor, 2019. "SONIC: SOcial Network with Influencers and Communities," IRTG 1792 Discussion Papers 2019-025, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    10. Simon N. Wood & Yannig Goude & Simon Shaw, 2015. "Generalized additive models for large data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(1), pages 139-155, January.
    11. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    12. repec:dau:papers:123456789/5478 is not listed on IDEAS
    13. Trimborn, Simon & Härdle, Wolfgang Karl, 2018. "CRIX an Index for cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 107-122.
    14. Petukhina, Alla & Trimborn, Simon & Härdle, Wolfgang Karl & Elendner, Hermann, 2018. "Investing with cryptocurrencies - evaluating the potential of portfolio allocation strategies," IRTG 1792 Discussion Papers 2018-058, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    15. Zinovyeva, Elizaveta & Härdle, Wolfgang Karl & Lessmann, Stefan, 2019. "Antisocial Online Behavior Detection Using Deep Learning," IRTG 1792 Discussion Papers 2019-029, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    16. Wei Zhang & Pengfei Wang & Xiao Li & Dehua Shen, 2018. "Some stylized facts of the cryptocurrency market," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5950-5965, November.
    17. Steven L. Heston & Robert A. Korajczyk & Ronnie Sadka, 2010. "Intraday Patterns in the Cross‐section of Stock Returns," Journal of Finance, American Finance Association, vol. 65(4), pages 1369-1407, August.
    18. Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
    19. Lee, Junghoon & Youn, Janghyuk & Chang, Woojin, 2012. "Intraday volatility and network topological properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1354-1360.
    20. M. P. Wand, 2017. "Fast Approximate Inference for Arbitrarily Large Semiparametric Regression Models via Message Passing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 137-168, January.
    21. Vincent Bogousslavsky, 2016. "Infrequent Rebalancing, Return Autocorrelation, and Seasonality," Journal of Finance, American Finance Association, vol. 71(6), pages 2967-3006, December.
    22. Gayatri Tilak & Tamás Szell & Rémy Chicheportiche & Anirban Chakraborti, 2011. "Study of statistical correlations in intraday and daily financial return time series," Post-Print hal-00827947, HAL.
    23. Chen, Kun & Luo, Peng & Sun, Bianxia & Wang, Huaiqing, 2015. "Which stocks are profitable? A network method to investigate the effects of network structure on stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 224-235.
    24. Zhang, Yuanyuan & Chan, Stephen & Chu, Jeffrey & Nadarajah, Saralees, 2019. "Stylised facts for high frequency cryptocurrency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 598-612.
    25. Chen, Cathy Yi-Hsuan & Després, Roméo & Guo, Li & Renault, Thomas, 2019. "What makes cryptocurrencies special? Investor sentiment and return predictability during the bubble," IRTG 1792 Discussion Papers 2019-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Yuecheng & Wu, Yangru & Yan, Shu & Liu, Yuzheng, 2023. "A seesaw effect in the cryptocurrency market: Understanding the return cross predictability of cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 74(C).
    2. Jahanshahloo, Hossein & Corbet, Shaen & Oxley, Les, 2022. "Seeking sigma: Time-of-the-day effects on the Bitcoin network," Finance Research Letters, Elsevier, vol. 49(C).
    3. Konstantin Häusler & Hongyu Xia, 2022. "Indices on cryptocurrencies: an evaluation," Digital Finance, Springer, vol. 4(2), pages 149-167, September.
    4. Ali Mehrban & Pegah Ahadian, 2024. "An adaptive network-based approach for advanced forecasting of cryptocurrency values," Papers 2401.05441, arXiv.org, revised Feb 2024.
    5. Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
    6. M. Eren Akbiyik & Mert Erkul & Killian Kaempf & Vaiva Vasiliauskaite & Nino Antulov-Fantulin, 2021. "Ask "Who", Not "What": Bitcoin Volatility Forecasting with Twitter Data," Papers 2110.14317, arXiv.org, revised Dec 2022.
    7. Wen, Zhuzhu & Bouri, Elie & Xu, Yahua & Zhao, Yang, 2022. "Intraday return predictability in the cryptocurrency markets: Momentum, reversal, or both," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    8. Olgun, Onur & Ekinci, Cumhur & Arıkan, Ramazan, 2024. "The performance of selected high-frequency trading proxies: An application on Turkish index futures market," Finance Research Letters, Elsevier, vol. 65(C).
    9. Ge, Hengshun & Yang, Haijun & Doukas, John A., 2024. "The optimal strategies of competitive high-frequency traders and effects on market liquidity," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 653-679.
    10. Colombo, Jefferson A. & Cruz, Fernando I. L. & Paese, Luis H. Z. & Cortes, Renan X., 2021. "The diversification benefits of cryptocurrencies in multi-asset portfolios: cross-country evidence," Textos para discussão 542, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    11. Zinovyev, Elizaveta & Reule, Raphael C. G. & Härdle, Wolfgang, 2021. "Understanding Smart Contracts: Hype or hope?," IRTG 1792 Discussion Papers 2021-004, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    12. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    13. Donglian Ma & Hisashi Tanizaki, 2022. "Intraday patterns of price clustering in Bitcoin," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    14. Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
    15. Bouri, Elie & Lau, Chi Keung Marco & Saeed, Tareq & Wang, Shixuan & Zhao, Yuqian, 2021. "On the intraday return curves of Bitcoin: Predictability and trading opportunities," International Review of Financial Analysis, Elsevier, vol. 76(C).
    16. Wang, Yifu & Lu, Wanbo & Lin, Min-Bin & Ren, Rui & Härdle, Wolfgang Karl, 2024. "Cross-exchange crypto risk: A high-frequency dynamic network perspective," International Review of Financial Analysis, Elsevier, vol. 94(C).
    17. Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    18. Danial Saef & Yuanrong Wang & Tomaso Aste, 2022. "Regime-based Implied Stochastic Volatility Model for Crypto Option Pricing," Papers 2208.12614, arXiv.org, revised Sep 2022.
    19. Scharnowski, Stefan & Shi, Yanghua, 2024. "Intraday herding and attention around the clock," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianna Figá-Talamanca & Sergio Focardi & Marco Patacca, 2021. "Common dynamic factors for cryptocurrencies and multiple pair-trading statistical arbitrages," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 863-882, December.
    2. Long, Huaigang & Zaremba, Adam & Demir, Ender & Szczygielski, Jan Jakub & Vasenin, Mikhail, 2020. "Seasonality in the Cross-Section of Cryptocurrency Returns," Finance Research Letters, Elsevier, vol. 35(C).
    3. Wong, Jian Cheng & Lian, Heng & Cheong, Siew Ann, 2009. "Detecting macroeconomic phases in the Dow Jones Industrial Average time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4635-4645.
    4. Pierre J. Venter & Eben Maré, 2020. "GARCH Generated Volatility Indices of Bitcoin and CRIX," JRFM, MDPI, vol. 13(6), pages 1-15, June.
    5. Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    6. Yuan, Xianghui & Li, Xiang, 2022. "Delta-hedging demand and intraday momentum: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    7. Nie, Chun-Xiao, 2020. "Correlation dynamics in the cryptocurrency market based on dimensionality reduction analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    8. Borgards, Oliver & Czudaj, Robert L., 2020. "The prevalence of price overreactions in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    9. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    10. Rama Cont & Adrien De Larrard, 2011. "Price dynamics in a Markovian limit order market," Papers 1104.4596, arXiv.org.
    11. Wen, Zhuzhu & Gong, Xu & Ma, Diandian & Xu, Yahua, 2021. "Intraday momentum and return predictability: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 95(C), pages 374-384.
    12. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    13. Konstantin Häusler & Hongyu Xia, 2022. "Indices on cryptocurrencies: an evaluation," Digital Finance, Springer, vol. 4(2), pages 149-167, September.
    14. Rui Fan & Oleksandr Talavera & Vu Tran, 2023. "Social media and price discovery: The case of cross‐listed firms," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 46(1), pages 151-167, February.
    15. Akbas, Ferhat & Boehmer, Ekkehart & Jiang, Chao & Koch, Paul D., 2022. "Overnight returns, daytime reversals, and future stock returns," Journal of Financial Economics, Elsevier, vol. 145(3), pages 850-875.
    16. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    17. Dinesh Gajurel & Biplob Chowdhury, 2021. "Realized Volatility, Jump and Beta: evidence from Canadian Stock Market," Applied Economics, Taylor & Francis Journals, vol. 53(55), pages 6376-6397, November.
    18. Borgards, Oliver & Czudaj, Robert L., 2021. "Features of overreactions in the cryptocurrency market," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 31-48.
    19. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    20. Akey, Pat & Grégoire, Vincent & Martineau, Charles, 2022. "Price revelation from insider trading: Evidence from hacked earnings news," Journal of Financial Economics, Elsevier, vol. 143(3), pages 1162-1184.

    More about this item

    JEL classification:

    • G02 - Financial Economics - - General - - - Behavioral Finance: Underlying Principles
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.04200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.