IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v176y2010i1p221-23410.1007-s10479-009-0586-4.html
   My bibliography  Save this article

Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution

Author

Listed:
  • C. Adcock

Abstract

The returns on most financial assets exhibit kurtosis and many also have probability distributions that possess skewness as well. In this paper a general multivariate model for the probability distribution of assets returns, which incorporates both kurtosis and skewness, is described. It is based on the multivariate extended skew-Student-t distribution. Salient features of the distribution are described and these are applied to the task of asset pricing. The paper shows that the market model is non-linear in general and that the sensitivity of asset returns to return on the market portfolio is not the same as the conventional beta, although this measure does arise in special cases. It is shown that the variance of asset returns is time varying and depends on the squared deviation of market portfolio return from its location parameter. The first order conditions for portfolio selection are described. Expected utility maximisers will select portfolios from an efficient surface, which is an analogue of the familiar mean-variance frontier, and which may be implemented using quadratic programming. Copyright Springer Science+Business Media, LLC 2010

Suggested Citation

  • C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
  • Handle: RePEc:spr:annopr:v:176:y:2010:i:1:p:221-234:10.1007/s10479-009-0586-4
    DOI: 10.1007/s10479-009-0586-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0586-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0586-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    2. J. G. Kallberg & W. T. Ziemba, 1983. "Comparison of Alternative Utility Functions in Portfolio Selection Problems," Management Science, INFORMS, vol. 29(11), pages 1257-1276, November.
    3. Landsman, Zinoviy, 2006. "On the generalization of Stein's Lemma for elliptical class of distributions," Statistics & Probability Letters, Elsevier, vol. 76(10), pages 1012-1016, May.
    4. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    5. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    6. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    7. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2005. "On fundamental skew distributions," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 93-116, September.
    8. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    9. M. C. Jones & M. J. Faddy, 2003. "A skew extension of the t‐distribution, with applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 159-174, February.
    10. C. J. Adcock, 2005. "Exploiting skewness to build an optimal hedge fund with a currency overlay," The European Journal of Finance, Taylor & Francis Journals, vol. 11(5), pages 445-462.
    11. Adelchi Azzalini & Marc G. Genton, 2008. "Robust Likelihood Methods Based on the Skew‐t and Related Distributions," International Statistical Review, International Statistical Institute, vol. 76(1), pages 106-129, April.
    12. Reinaldo B. Arellano‐Valle & Adelchi Azzalini, 2006. "On the Unification of Families of Skew‐normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 561-574, September.
    13. Praetz, Peter D, 1972. "The Distribution of Share Price Changes," The Journal of Business, University of Chicago Press, vol. 45(1), pages 49-55, January.
    14. Jones, M. C., 2002. "Marginal Replacement in Multivariate Densities, with Application to Skewing Spherically Symmetric Distributions," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 85-99, April.
    15. Horrace, William C., 2005. "Some results on the multivariate truncated normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 209-221, May.
    16. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    17. Liu, Jun S., 1994. "Siegel's formula via Stein's identities," Statistics & Probability Letters, Elsevier, vol. 21(3), pages 247-251, October.
    18. Landsman, Zinoviy & Neslehová, Johanna, 2008. "Stein's Lemma for elliptical random vectors," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 912-927, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adcock, C.J., 2014. "Mean–variance–skewness efficient surfaces, Stein’s lemma and the multivariate extended skew-Student distribution," European Journal of Operational Research, Elsevier, vol. 234(2), pages 392-401.
    2. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Adcock, C J & Meade, N, 2017. "Using parametric classification trees for model selection with applications to financial risk management," European Journal of Operational Research, Elsevier, vol. 259(2), pages 746-765.
    4. Kim, Hyoung-Moon & Genton, Marc G., 2011. "Characteristic functions of scale mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1105-1117, August.
    5. Lin, Tsung I. & Ho, Hsiu J. & Chen, Chiang L., 2009. "Analysis of multivariate skew normal models with incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2337-2351, November.
    6. Mondal, Sagnik & Genton, Marc G., 2024. "A multivariate skew-normal-Tukey-h distribution," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    7. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    8. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    9. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    10. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    11. Dongming Zhu & John W. Galbraith, 2009. "Forecasting Expected Shortfall with a Generalized Asymmetric Student-t Distribution," CIRANO Working Papers 2009s-24, CIRANO.
    12. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    13. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.
    14. Richard Harris & C. Coskun Kucukozmen, 2001. "The empirical distribution of stock returns: evidence from an emerging European market," Applied Economics Letters, Taylor & Francis Journals, vol. 8(6), pages 367-371.
    15. J. Rosco & M. Jones & Arthur Pewsey, 2011. "Skew t distributions via the sinh-arcsinh transformation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 630-652, November.
    16. Kim, Hyoung-Moon & Ryu, Duchwan & Mallick, Bani K. & Genton, Marc G., 2014. "Mixtures of skewed Kalman filters," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 228-251.
    17. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.
    18. Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.
    19. Reinaldo B. Arellano-Valle, 2010. "On the information matrix of the multivariate skew-t model," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 371-386.
    20. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2017. "Extended Generalized Skew-Elliptical Distributions and their Moments," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-100, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:176:y:2010:i:1:p:221-234:10.1007/s10479-009-0586-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.