Machine Learning in Finance: A Metadata-Based Systematic Review of the Literature
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Day, Richard H. & Huang, Weihong, 1990.
"Bulls, bears and market sheep,"
Journal of Economic Behavior & Organization, Elsevier, vol. 14(3), pages 299-329, December.
- Day, R. & Huang, W., 1988. "Bulls, Bears And Market Sheep," Papers m8822, Southern California - Department of Economics.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017.
"Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500,"
European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2016. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," FAU Discussion Papers in Economics 03/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Christopher Krauss & Xuan Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01515120, HAL.
- Aria, Massimo & Cuccurullo, Corrado, 2017. "bibliometrix: An R-tool for comprehensive science mapping analysis," Journal of Informetrics, Elsevier, vol. 11(4), pages 959-975.
- William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
- Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019.
"Bitcoin price forecasting with neuro-fuzzy techniques,"
European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
- George S. Atsalakis & Ioanna G. Atsalaki & Fotios Pasiouras & Constantin Zopounidis, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," Post-Print hal-02879928, HAL.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Valeriy Gavrishchaka & Supriya Banerjee, 2006. "Support Vector Machine as an Efficient Framework for Stock Market Volatility Forecasting," Computational Management Science, Springer, vol. 3(2), pages 147-160, April.
- Neely, Christopher J. & Weller, Paul A. & Ulrich, Joshua M., 2009.
"The Adaptive Markets Hypothesis: Evidence from the Foreign Exchange Market,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(2), pages 467-488, April.
- Christopher J. Neely & Joshua M. Ulrich & Paul A. Weller, 2007. "The adaptive markets hypothesis: evidence from the foreign exchange market," Working Papers 2006-046, Federal Reserve Bank of St. Louis.
- Donaldson, R. Glen & Kamstra, Mark, 1997. "An artificial neural network-GARCH model for international stock return volatility," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 17-46, January.
- Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994.
"A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks,"
Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
- James M. Hutchinson & Andrew W. Lo & Tomaso Poggio, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Learning Networks," NBER Working Papers 4718, National Bureau of Economic Research, Inc.
- Philip Hans Franses & Paul van Homelen, 1998. "On forecasting exchange rates using neural networks," Applied Financial Economics, Taylor & Francis Journals, vol. 8(6), pages 589-596.
- Kaucic, Massimiliano, 2010. "Investment using evolutionary learning methods and technical rules," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1717-1727, December.
- Perevochtchikova, María & De la Mora-De la Mora, Gabriela & Hernández Flores, José Álvaro & Marín, Wilmer & Langle Flores, Alfonso & Ramos Bueno, Arturo & Rojo Negrete, Iskra Alejandra, 2019. "Systematic review of integrated studies on functional and thematic ecosystem services in Latin America, 1992–2017," Ecosystem Services, Elsevier, vol. 36(C), pages 1-1.
- Garcia, Rene & Gencay, Ramazan, 2000.
"Pricing and hedging derivative securities with neural networks and a homogeneity hint,"
Journal of Econometrics, Elsevier, vol. 94(1-2), pages 93-115.
- René Garcia & Ramazan Gençay, 1998. "Pricing and Hedging Derivative Securities with Neural Networks and a Homogeneity Hint," CIRANO Working Papers 98s-35, CIRANO.
- S. D. Bekiros & D. A. Georgoutsos, 2008.
"Direction-of-change forecasting using a volatility-based recurrent neural network,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 407-417.
- Bekiros, S. & Georgoutsos, D., 2006. "Direction-of-Change Forecasting using a Volatility- Based Recurrent Neural Network," CeNDEF Working Papers 06-16, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Paul Glasserman & Kriste Krstovski & Paul Laliberte & Harry Mamaysky, 2020. "Choosing News Topics to Explain Stock Market Returns," Papers 2010.07289, arXiv.org.
- Malinauskaite, Laura & Cook, David & Davíðsdóttir, Brynhildur & Ögmundardóttir, Helga & Roman, Joe, 2019. "Ecosystem services in the Arctic: a thematic review," Ecosystem Services, Elsevier, vol. 36(C), pages 1-1.
- Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014.
"Forecasting the Equity Risk Premium: The Role of Technical Indicators,"
Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2011. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Working Papers CoFie-02-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Frankel, Jeffrey A & Froot, Kenneth A, 1990. "Chartists, Fundamentalists, and Trading in the Foreign Exchange Market," American Economic Review, American Economic Association, vol. 80(2), pages 181-185, May.
- Hsieh, David A, 1989. "Testing for Nonlinear Dependence in Daily Foreign Exchange Rates," The Journal of Business, University of Chicago Press, vol. 62(3), pages 339-368, July.
- Jian Huang & Junyi Chai & Stella Cho, 2020. "Deep learning in finance and banking: A literature review and classification," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-24, December.
- Blake, Andrew P. & Kapetanios, George, 2000.
"A radial basis function artificial neural network test for ARCH,"
Economics Letters, Elsevier, vol. 69(1), pages 15-23, October.
- Andrew Blake, 1999. "A Radial Basis Function Artificial Neural Network Test for ARCH," National Institute of Economic and Social Research (NIESR) Discussion Papers 154, National Institute of Economic and Social Research.
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
- Menkhoff, Lukas, 2010.
"The use of technical analysis by fund managers: International evidence,"
Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2573-2586, November.
- Menkhoff, Lukas, 2010. "The Use of Technical Analysis by Fund Managers: International Evidence," Hannover Economic Papers (HEP) dp-446, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Fernandez-Rodriguez, Fernando & Gonzalez-Martel, Christian & Sosvilla-Rivero, Simon, 2000.
"On the profitability of technical trading rules based on artificial neural networks:: Evidence from the Madrid stock market,"
Economics Letters, Elsevier, vol. 69(1), pages 89-94, October.
- Fernando Fernández-Rodríguez & Christian González-Martel* & Simón Sosvilla-Rivero, "undated". "On the profitability of technical trading rules based on arifitial neural networks : evidence from the Madrid stock market," Working Papers 99-07, FEDEA.
- Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000.
"Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation,"
Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
- Andrew Lo & Harry Mamaysky & Jiang Wang, 1999. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Computing in Economics and Finance 1999 402, Society for Computational Economics.
- Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," NBER Working Papers 7613, National Bureau of Economic Research, Inc.
- Jan De Spiegeleer & Dilip B. Madan & Sofie Reyners & Wim Schoutens, 2018. "Machine learning for quantitative finance: fast derivative pricing, hedging and fitting," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1635-1643, October.
- William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
- Gradojevic, Nikola & Gençay, Ramazan, 2013. "Fuzzy logic, trading uncertainty and technical trading," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 578-586.
- Robert Prasch & Thierry Warin, 2016. "Systemic risk and financial regulations: A theoretical perspective," Journal of Banking Regulation, Palgrave Macmillan, vol. 17(3), pages 188-199, July.
- Gerritsen, Dirk F. & Bouri, Elie & Ramezanifar, Ehsan & Roubaud, David, 2020. "The profitability of technical trading rules in the Bitcoin market," Finance Research Letters, Elsevier, vol. 34(C).
- Berardi, Michele, 2011.
"Fundamentalists vs. chartists: Learning and predictor choice dynamics,"
Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 776-792, May.
- Michele Berardi, 2008. "Fundamentalists vs. chartists: learning and predictor choice dynamics," Centre for Growth and Business Cycle Research Discussion Paper Series 104, Economics, The University of Manchester.
- Michele Berardi, 2011. "Fundamentalists vs. chartists: Learning and predictor choice dynamics," Post-Print hal-00796301, HAL.
- Menkhoff, Lukas, 1997. "Examining the Use of Technical Currency Analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 2(4), pages 307-318, October.
- Franses Philip Hans & van Griensven Kasper, 1998. "Forecasting Exchange Rates Using Neural Networks for Technical Trading Rules," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-8, January.
- Taylor, Mark P. & Allen, Helen, 1992. "The use of technical analysis in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 11(3), pages 304-314, June.
- Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Veronika Staňková, 2021. "Can Machine Learning Be Useful in Corporate Finance and Business Valuation? Overview of Current Research [Může být strojové učení užitečné ve financích podniku a jeho ocenění? Přehled současného vý," Oceňování, Prague University of Economics and Business, vol. 14(4), pages 53-66.
- Olcay Ozupek & Reyat Yilmaz & Bita Ghasemkhani & Derya Birant & Recep Alp Kut, 2024. "A Novel Hybrid Model (EMD-TI-LSTM) for Enhanced Financial Forecasting with Machine Learning," Mathematics, MDPI, vol. 12(17), pages 1-36, September.
- Julio E. Sandubete & León Beleña & Juan Carlos García-Villalobos, 2023. "Testing the Efficient Market Hypothesis and the Model-Data Paradox of Chaos on Top Currencies from the Foreign Exchange Market (FOREX)," Mathematics, MDPI, vol. 11(2), pages 1-29, January.
- Prashant Joshi & Jinghua Wang & Michael Busler, 2022. "A Study of the Machine Learning Approach and the MGARCH-BEKK Model in Volatility Transmission," JRFM, MDPI, vol. 15(3), pages 1-9, March.
- Teddy Lazebnik & Tzach Fleischer & Amit Yaniv-Rosenfeld, 2023. "Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks," Sustainability, MDPI, vol. 15(14), pages 1-9, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
- Chen, Rui & Ren, Jinjuan, 2022. "Do AI-powered mutual funds perform better?," Finance Research Letters, Elsevier, vol. 47(PA).
- Rubesam, Alexandre, 2022.
"Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market,"
Emerging Markets Review, Elsevier, vol. 51(PB).
- Alexandre Rubesam, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Post-Print hal-03707365, HAL.
- LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654, January.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, November.
- Han, Chulwoo & He, Zhaodong & Toh, Alenson Jun Wei, 2023. "Pairs trading via unsupervised learning," European Journal of Operational Research, Elsevier, vol. 307(2), pages 929-947.
- Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
- Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
- Daniel Cunha Oliveira & Yutong Lu & Xi Lin & Mihai Cucuringu & Andre Fujita, 2024. "Causality-Inspired Models for Financial Time Series Forecasting," Papers 2408.09960, arXiv.org.
- Christopher J. Neely & Paul A. Weller, 2011. "Technical analysis in the foreign exchange market," Working Papers 2011-001, Federal Reserve Bank of St. Louis.
- Barua, Ronil & Sharma, Anil K., 2023. "Using fear, greed and machine learning for optimizing global portfolios: A Black-Litterman approach," Finance Research Letters, Elsevier, vol. 58(PC).
- Sergio Consoli & Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Neural forecasting of the Italian sovereign bond market with economic news," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 197-224, December.
- Souropanis, Ioannis & Vivian, Andrew, 2023. "Forecasting realized volatility with wavelet decomposition," Journal of Empirical Finance, Elsevier, vol. 74(C).
- Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
- Ajitha Kumari Vijayappan Nair Biju & Ann Susan Thomas & J Thasneem, 2024. "Examining the research taxonomy of artificial intelligence, deep learning & machine learning in the financial sphere—a bibliometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(1), pages 849-878, February.
- Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Schnaubelt, Matthias & Seifert, Oleg, 2020. "Valuation ratios, surprises, uncertainty or sentiment: How does financial machine learning predict returns from earnings announcements?," FAU Discussion Papers in Economics 04/2020, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Hsu, Po-Hsuan & Taylor, Mark P. & Wang, Zigan, 2016. "Technical trading: Is it still beating the foreign exchange market?," Journal of International Economics, Elsevier, vol. 102(C), pages 188-208.
- Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, September.
- Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018.
"Long Run Returns Predictability and Volatility with Moving Averages,"
Risks, MDPI, vol. 6(4), pages 1-18, September.
- Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Documentos de Trabajo del ICAE 2018-25, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Chang, C-L. & Ilomäki, J. & Laurila, H. & McAleer, M.J., 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Econometric Institute Research Papers EI2018-39, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
More about this item
Keywords
efficient market hypothesis; machine learning; network analysis; sentiment analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:14:y:2021:i:7:p:302-:d:587602. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.