IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v46y2019i12p2289-2297.html
   My bibliography  Save this article

Identification of technical analysis patterns with smoothing splines for bitcoin prices

Author

Listed:
  • Nikolay Miller
  • Yiming Yang
  • Bruce Sun
  • Guoyi Zhang

Abstract

This research studies automatic price pattern search procedure for bitcoin cryptocurrency based on 1-min price data. To achieve this, search algorithm is proposed based on nonparametric regression method of smoothing splines. We investigate some well-known technical analysis patterns and construct algorithmic trading strategy to evaluate the effectiveness of the patterns. We found that method of smoothing splines for identifying the technical analysis patterns and that strategies based on certain technical analysis patterns yield returns that significantly exceed results of unconditional trading strategies.

Suggested Citation

  • Nikolay Miller & Yiming Yang & Bruce Sun & Guoyi Zhang, 2019. "Identification of technical analysis patterns with smoothing splines for bitcoin prices," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(12), pages 2289-2297, September.
  • Handle: RePEc:taf:japsta:v:46:y:2019:i:12:p:2289-2297
    DOI: 10.1080/02664763.2019.1580251
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2019.1580251
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2019.1580251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur Sokolovsky & Luca Arnaboldi, 2020. "A Generic Methodology for the Statistically Uniform & Comparable Evaluation of Automated Trading Platform Components," Papers 2009.09993, arXiv.org, revised Jun 2022.
    2. Sapkota, Niranjan & Grobys, Klaus, 2021. "Asset market equilibria in cryptocurrency markets: Evidence from a study of privacy and non-privacy coins," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    3. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    4. Grobys, Klaus & Junttila, Juha, 2021. "Speculation and lottery-like demand in cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    5. Hakan Pabuccu & Serdar Ongan & Ayse Ongan, 2023. "Forecasting the movements of Bitcoin prices: an application of machine learning algorithms," Papers 2303.04642, arXiv.org.
    6. Svogun, Daniel & Bazán-Palomino, Walter, 2022. "Technical analysis in cryptocurrency markets: Do transaction costs and bubbles matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    7. Łęt Blanka & Sobański Konrad & Świder Wojciech & Włosik Katarzyna, 2022. "Is the cryptocurrency market efficient? Evidence from an analysis of fundamental factors for Bitcoin and Ethereum," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 58(4), pages 351-370, December.
    8. Nicolás Magner & Nicolás Hardy, 2022. "Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle," Mathematics, MDPI, vol. 10(13), pages 1-27, July.
    9. Ahmed, Shaker & Grobys, Klaus & Sapkota, Niranjan, 2020. "Profitability of technical trading rules among cryptocurrencies with privacy function," Finance Research Letters, Elsevier, vol. 35(C).
    10. Grobys, Klaus & Ahmed, Shaker & Sapkota, Niranjan, 2020. "Technical trading rules in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 32(C).
    11. Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:46:y:2019:i:12:p:2289-2297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.