IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223030050.html
   My bibliography  Save this article

Combustion of polyethylene and polypropylene in the fluidized bed with a variable vertical density profile

Author

Listed:
  • Berkowicz-Płatek, Gabriela
  • Żukowski, Witold
  • Leski, Krystian

Abstract

A new type of fluidized bed with a variable vertical density profile was developed. A mixture of sand (Ønominal = 100–140 μm, 2.6 g/cm3) and cenospheres (Ønominal = 140–160 μm, 0.85 g/cm3) was used to form a binary fluidized bed. The minimum fluidization velocity of the binary fluidized bed was determined experimentally. Two points of inflection on the fluidization curve were observed. Additionally, a measurement of the pressure as a function of height was used to determine the profile of fluidized bed density. It was proven that the fluidized bed made out of cenospheres and sand can be characterized by a variable vertical density profile. The binary fluidized bed was used for the combustion of polyolefins. The results were compared to combustion in a conventional fluidized bed made out of sand. The surface of the fluidized bed was video recorded and the changes in the image brightness were used to identify diffusion combustion in the freeboard. A Fourier Transform Infrared (FTIR) analyzer with high spectral resolution (1 cm−1) was used to record the IR spectra of flue gases. In-house software was used to deconvolve complex IR spectra. In the process performed in the fluidized bed made out of sand, regardless of temperature, around 30 % of the polymeric carbon left the reactor in the form of soot. The lack of dependence on the temperature results from the fact that in such an organized process combustion did not take place inside the fluidized bed but on its surface. The binary fluidized bed eliminated the problem of the presence of diffusion flames and soot formation. High fuel conversion to CO2 (above 90 %) was observed at temperatures above over 800 °C during polyolefin combustion in the binary fluidized bed.

Suggested Citation

  • Berkowicz-Płatek, Gabriela & Żukowski, Witold & Leski, Krystian, 2024. "Combustion of polyethylene and polypropylene in the fluidized bed with a variable vertical density profile," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030050
    DOI: 10.1016/j.energy.2023.129611
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Bin & Wang, Weizuo & Jin, Hui, 2020. "Experimental study on gasification performance of polypropylene (PP) plastics in supercritical water," Energy, Elsevier, vol. 191(C).
    2. Du, Wang & Ma, Liping & Pan, Qinghuan & Dai, Quxiu & Zhang, Mi & Yin, Xia & Xiong, Xiong & Zhang, Wei, 2023. "Full-loop CFD simulation of lignite Chemical Looping Gasification with phosphogypsum as oxygen carrier using a circulating fluidized bed," Energy, Elsevier, vol. 262(PA).
    3. Mlonka-Mędrala, Agata & Dziok, Tadeusz & Magdziarz, Aneta & Nowak, Wojciech, 2021. "Composition and properties of fly ash collected from a multifuel fluidized bed boiler co-firing refuse derived fuel (RDF) and hard coal," Energy, Elsevier, vol. 234(C).
    4. Zhang, Wenqi & Zhou, Renjie & Gao, Shuaifei & Wang, Yinfeng & Zhu, Lin & Gao, Ying & Zhu, Yuezhao, 2022. "Investigation on cogasification and melting behavior of ash-rich biomass solid waste and Ca-rich petrochemical sludge pyrolysis residue in CO2 atmosphere," Energy, Elsevier, vol. 239(PB).
    5. Lasek, Janusz A. & Głód, Krzysztof & Słowik, Krzysztof, 2021. "The co-combustion of torrefied municipal solid waste and coal in bubbling fluidised bed combustor under atmospheric and elevated pressure," Renewable Energy, Elsevier, vol. 179(C), pages 828-841.
    6. Li, Fenghai & Li, Yang & Fan, Hongli & Wang, Tao & Guo, Mingxi & Fang, Yitian, 2019. "Investigation on fusion characteristics of deposition from biomass vibrating grate furnace combustion and its modification," Energy, Elsevier, vol. 174(C), pages 724-734.
    7. Duan, Feng & Liu, Jian & Chyang, Chien-Song & Hu, Chun-Hsuan & Tso, Jim, 2013. "Combustion behavior and pollutant emission characteristics of RDF (refuse derived fuel) and sawdust in a vortexing fluidized bed combustor," Energy, Elsevier, vol. 57(C), pages 421-426.
    8. Żukowski, Witold & Jankowski, Dawid & Wrona, Jan & Berkowicz-Płatek, Gabriela, 2023. "Combustion behavior and pollutant emission characteristics of polymers and biomass in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 263(PD).
    9. Chen, Jingwei & Fu, Liangyu & Tian, Ming & Kang, Siyi & E, Jiaqiang, 2022. "Comparison and synergistic effect analysis on supercritical water gasification of waste thermoplastic plastics based on orthogonal experiments," Energy, Elsevier, vol. 261(PA).
    10. Li, Dan & Lei, Shijun & Rajput, Gulzeb & Zhong, Lei & Ma, Wenchao & Chen, Guanyi, 2021. "Study on the co-pyrolysis of waste tires and plastics," Energy, Elsevier, vol. 226(C).
    11. Vilardi, Giorgio & Verdone, Nicola, 2022. "Exergy analysis of municipal solid waste incineration processes: The use of O2-enriched air and the oxy-combustion process," Energy, Elsevier, vol. 239(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berkowicz-Płatek, Gabriela & Żukowski, Witold & Leski, Krystian, 2024. "Production of hydrogen from polyoxymethylene in a binary fluidized bed," Applied Energy, Elsevier, vol. 360(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhijie & Wei, Wei & Chen, Xueming & Liu, Yiwen & Shen, Yansong & Ni, Bing-Jie, 2024. "Upcycling of plastic wastes for hydrogen production: Advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    2. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Sui, Haiqing & Chen, Jianfeng & Cheng, Wei & Zhu, Youjian & Zhang, Wennan & Hu, Junhao & Jiang, Hao & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of oxidative torrefaction on fuel and pelletizing properties of agricultural biomass in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 226(C).
    4. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    5. Botakoz Suleimenova & Berik Aimbetov & Daulet Zhakupov & Dhawal Shah & Yerbol Sarbassov, 2022. "Co-Firing of Refuse-Derived Fuel with Ekibastuz Coal in a Bubbling Fluidized Bed Reactor: Analysis of Emissions and Ash Characteristics," Energies, MDPI, vol. 15(16), pages 1-11, August.
    6. He, Yahui & Li, Xiaofu & Meng, Li & Zhang, Wenqi & Wang, Yinfeng & Wang, Lei & Bi, Xiaotao & Zhu, Yuezhao, 2024. "Experimental investigation on high-temperature co-gasification and melting behavior of petrochemical sludge and bituminous coal in CO2 atmosphere," Energy, Elsevier, vol. 303(C).
    7. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    8. Wang, Qian & Han, Kuihua & Wang, Peifu & Li, Shijie & Zhang, Mingyang, 2020. "Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere," Energy, Elsevier, vol. 195(C).
    9. Choi, Yujin & Jun, Hyunji & Shin, Jong Seon & Han, Keun-Hee & Bae, Dal Hee & Hwang, Byung Wook & Kim, Hong Jip & Shun, Dowon, 2020. "Effects of boron compounds on decomposition of chlorides to control clinkers under solid refuse fuel combustion conditions," Energy, Elsevier, vol. 210(C).
    10. Chen, Wen-Lih & Currao, Gaetano & Li, Yueh-Heng & Kao, Chien-Chun, 2023. "Employing Taguchi method to optimize the performance of a microscale combined heat and power system with Stirling engine and thermophotovoltaic array," Energy, Elsevier, vol. 270(C).
    11. Yao, Xiwen & Liu, Qinghua & Kang, Zijian & An, Zhixing & Zhou, Haodong & Xu, Kaili, 2023. "Quantitative study on thermal conversion behaviours and gas emission properties of biomass in nitrogen and in CO2/N2 mixtures by TGA/DTG and a fixed-bed tube furnace," Energy, Elsevier, vol. 270(C).
    12. Camilo Andrés Guerrero-Martin & Juan Sebastián Fernández-Ramírez & Jaime Eduardo Arturo-Calvache & Harvey Andrés Milquez-Sanabria & Fernando Antonio da Silva Fernandes & Vando José Costa Gomes & Wanes, 2023. "Exergy Load Distribution Analysis Applied to the Dehydration of Ethanol by Extractive Distillation," Energies, MDPI, vol. 16(8), pages 1-14, April.
    13. Chen, Heng & Li, Jiarui & Li, Tongyu & Xu, Gang & Jin, Xi & Wang, Min & Liu, Tong, 2022. "Performance assessment of a novel medical-waste-to-energy design based on plasma gasification and integrated with a municipal solid waste incineration plant," Energy, Elsevier, vol. 245(C).
    14. Cui, Yunlei & Zhang, Yaning & Cui, Longfei & Xiong, Qingang & Mostafa, Ehab, 2023. "Microwave-assisted fluidized bed reactor pyrolysis of polypropylene plastic for pyrolysis gas production towards a sustainable development," Applied Energy, Elsevier, vol. 342(C).
    15. Wang, Cui & Zhu, Chao & Huang, Jianbing & Li, Linfeng & Jin, Hui, 2021. "Enhancement of depolymerization slag gasification in supercritical water and its gasification performance in fluidized bed reactor," Renewable Energy, Elsevier, vol. 168(C), pages 829-837.
    16. Wang, Chang’an & Zhou, Lei & Fan, Gaofeng & Yuan, Maobo & Zhao, Lei & Tang, Guantao & Liu, Chengchang & Che, Defu, 2021. "Experimental study on ash morphology, fusibility, and mineral transformation during co-combustion of antibiotic filter residue and biomass," Energy, Elsevier, vol. 217(C).
    17. Li, Fenghai & Zhao, Chaoyue & Fan, Hongli & Xu, Meiling & Guo, Qianqian & Li, Yang & Wu, Lishun & Wang, Tao & Fang, Yitian, 2022. "Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition," Energy, Elsevier, vol. 251(C).
    18. Chavando, José Antonio Mayoral & Silva, Valter Bruno & Tarelho, Luís A.C. & Cardoso, João Sousa & Eusébio, Daniela, 2022. "Snapshot review of refuse-derived fuels," Utilities Policy, Elsevier, vol. 74(C).
    19. Lasek, Janusz A. & Matuszek, Katarzyna & Hrycko, Piotr & Głód, Krzysztof & Li, Yueh-Heng, 2023. "The combustion of torrefied biomass in commercial-scale domestic boilers," Renewable Energy, Elsevier, vol. 216(C).
    20. Li, Pin-Wei & Chyang, Chien-Song & Ni, Hung-Wen, 2018. "An experimental study of the effect of nitrogen origin on the formation and reduction of NOx in fluidized-bed combustion," Energy, Elsevier, vol. 154(C), pages 319-327.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.