IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221023690.html
   My bibliography  Save this article

Investigation on cogasification and melting behavior of ash-rich biomass solid waste and Ca-rich petrochemical sludge pyrolysis residue in CO2 atmosphere

Author

Listed:
  • Zhang, Wenqi
  • Zhou, Renjie
  • Gao, Shuaifei
  • Wang, Yinfeng
  • Zhu, Lin
  • Gao, Ying
  • Zhu, Yuezhao

Abstract

The process of gasification coupled with melting is an effective technology that can realize the clean disposal of hazardous solid wastes. In this study, the gasification and melting characteristics of Chinese medicine residue (CMR) and pyrolysis residue of petrochemical sludge (PRPS) blends were investigated. The gasification residues obtained at different gasification temperatures and with variant blend ratios (mass ratio of CMR to PRPS) were evaluated. Results demonstrated that the melting degree of gasification residues was proportional to gasification temperature, presenting as four distinct morphologies: the CaO-rich powder-like (1100 °C), the gehlenite-rich black-gray hemispherical (1200 °C), virid amorphous crystal (1300 °C), and transparent vitrified SiO2 (1400 °C). Especially, as increasing the content of CMR, the gasification and melting characteristic was promoted, which were related to energy resource attributes of CMR and supply of low-melting eutectic constituent elements. In addition, when the gasification temperature was 1300 °C, the mineral composition of gasification residues gradually transformed from Ca–Si–Al compounds into amorphous matter as increasing CMR content. Moreover, while the blend ratio further attained to 3:1, gasification residues appeared as distributed globules and syngas productivity was enhanced to 0.99 L/g. The leachability of heavy metals inside the melting slags could meet the established criteria, indicating the harmless disposal of hazardous wastes.

Suggested Citation

  • Zhang, Wenqi & Zhou, Renjie & Gao, Shuaifei & Wang, Yinfeng & Zhu, Lin & Gao, Ying & Zhu, Yuezhao, 2022. "Investigation on cogasification and melting behavior of ash-rich biomass solid waste and Ca-rich petrochemical sludge pyrolysis residue in CO2 atmosphere," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023690
    DOI: 10.1016/j.energy.2021.122121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221023690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Ye & Li, Xian & Yao, Zhiyi & Cui, Xiaoqiang & Wang, Chi-Hwa, 2019. "CO2 gasification of woody biomass: Experimental study from a lab-scale reactor to a small-scale autothermal gasifier," Energy, Elsevier, vol. 170(C), pages 497-506.
    2. Kan, Xiang & Chen, Xiaoping & Shen, Ye & Lapkin, Alexei A. & Kraft, Markus & Wang, Chi-Hwa, 2019. "Box-Behnken design based CO2 co-gasification of horticultural waste and sewage sludge with addition of ash from waste as catalyst," Applied Energy, Elsevier, vol. 242(C), pages 1549-1561.
    3. Mostashari-Rad, Fatemeh & Nabavi-Pelesaraei, Ashkan & Soheilifard, Farshad & Hosseini-Fashami, Fatemeh & Chau, Kwok-wing, 2019. "Energy optimization and greenhouse gas emissions mitigation for agricultural and horticultural systems in Northern Iran," Energy, Elsevier, vol. 186(C).
    4. Link, Siim & Tran, Khanh-Quang & Bach, Quang-Vu & Yrjas, Patrik & Lindberg, Daniel & Arvelakis, Stelios & Rosin, Argo, 2018. "Catalytic effect of oil shale ash on CO2 gasification of leached wheat straw and reed chars," Energy, Elsevier, vol. 152(C), pages 906-913.
    5. Zhang, Zihang & Yi, Baojun & Sun, Zhengshuai & Zhang, Qi & Feng, He & Hu, Hongyun & Huang, Xiangguo & Zhao, Chunqing, 2021. "Reaction process and characteristics for coal char gasification under changed CO2/H2O atmosphere in various reaction stages," Energy, Elsevier, vol. 229(C).
    6. Wen, Yuming & Zaini, Ilman Nuran & Wang, Shule & Mu, Wangzhong & Jönsson, Pär Göran & Yang, Weihong, 2021. "Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study," Energy, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berkowicz-Płatek, Gabriela & Żukowski, Witold & Leski, Krystian, 2024. "Combustion of polyethylene and polypropylene in the fluidized bed with a variable vertical density profile," Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ratikorn Sornumpol & Dang Saebea & Amornchai Arpornwichanop & Yaneeporn Patcharavorachot, 2023. "Process Optimization and CO 2 Emission Analysis of Coal/Biomass Gasification Integrated with a Chemical Looping Process," Energies, MDPI, vol. 16(6), pages 1-17, March.
    2. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    3. Chen, Qiuwen & Ma, Xiaohan & Hu, Jiayu & Zhang, Xiaohong, 2023. "Comparison of comprehensive performance of kiwifruit production in China, Iran, and Italy based on emergy and carbon emissions," Ecological Modelling, Elsevier, vol. 483(C).
    4. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    5. Kumar Ganti, Praful & Naik, Hrushikesh & Kanungo Barada, Mohanty, 2022. "Environmental impact analysis and enhancement of factors affecting the photovoltaic (PV) energy utilization in mining industry by sparrow search optimization based gradient boosting decision tree appr," Energy, Elsevier, vol. 244(PA).
    6. Yang, Xiaoxia & Gu, Shengshen & Kheradmand, Amanj & Kan, Tao & He, Jing & Strezov, Vladimir & Zou, Ruiping & Yu, Aibing & Jiang, Yijiao, 2022. "Tunable syngas production from biomass: Synergistic effect of steam, Ni–CaO catalyst, and biochar," Energy, Elsevier, vol. 254(PB).
    7. Yepes Maya, Diego Mauricio & Silva Lora, Electo Eduardo & Andrade, Rubenildo Vieira & Ratner, Albert & Martínez Angel, Juan Daniel, 2021. "Biomass gasification using mixtures of air, saturated steam, and oxygen in a two-stage downdraft gasifier. Assessment using a CFD modeling approach," Renewable Energy, Elsevier, vol. 177(C), pages 1014-1030.
    8. AlNouss, Ahmed & Parthasarathy, Prakash & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish & McKay, Gordon, 2020. "Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS," Applied Energy, Elsevier, vol. 261(C).
    9. Pan, Ruming & Martins, Marcio Ferreira & Debenest, Gérald, 2022. "Optimization of oil production through ex-situ catalytic pyrolysis of waste polyethylene with activated carbon," Energy, Elsevier, vol. 248(C).
    10. Ciardiello, Adriana & Rosso, Federica & Dell'Olmo, Jacopo & Ciancio, Virgilio & Ferrero, Marco & Salata, Ferdinando, 2020. "Multi-objective approach to the optimization of shape and envelope in building energy design," Applied Energy, Elsevier, vol. 280(C).
    11. Nakyai, Teeranun & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai & Saebea, Dang, 2020. "Comparative exergoeconomic analysis of indirect and direct bio-dimethyl ether syntheses based on air-steam biomass gasification with CO2 utilization," Energy, Elsevier, vol. 209(C).
    12. Liu, Yigang & Li, Guoxuan & Chen, Zhengrun & Shen, Yuanyuan & Zhang, Hongru & Wang, Shuai & Qi, Jianguang & Zhu, Zhaoyou & Wang, Yinglong & Gao, Jun, 2020. "Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment," Energy, Elsevier, vol. 204(C).
    13. Tiwari, Aviral Kumar & Boachie, Micheal Kofi & Suleman, Muhammed Tahir & Gupta, Rangan, 2021. "Structure dependence between oil and agricultural commodities returns: The role of geopolitical risks," Energy, Elsevier, vol. 219(C).
    14. Ghasemi-Mobtaker, Hassan & Kaab, Ali & Rafiee, Shahin, 2020. "Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran," Energy, Elsevier, vol. 193(C).
    15. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Cheng, Zeyang & Liu, Zexi, 2020. "Study on the effect of gasification agents on the integrated system of biomass gasification combined cycle and oxy-fuel combustion," Energy, Elsevier, vol. 206(C).
    16. Hessampour, Reza & Bastani, Aboubakr & Hassani, Mehrdad & Failla, Sabina & Vaverková, Magdalena Daria & Halog, Anthony, 2023. "Joint life cycle assessment and data envelopment analysis for the benchmarking of energy, exergy, environmental effects, and water footprint in the canned apple supply chain," Energy, Elsevier, vol. 278(C).
    17. Yeşim Aytop, 2023. "Determination of Energy Consumption and Technical Efficiency of Cotton Farms in Türkiye," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    18. Garofalo, Pasquale & Mastrorilli, Marcello & Ventrella, Domenico & Vonella, Alessandro Vittorio & Campi, Pasquale, 2020. "Modelling the suitability of energy crops through a fuzzy-based system approach: The case of sugar beet in the bioethanol supply chain," Energy, Elsevier, vol. 196(C).
    19. Guang Chen & Yue Deng & Apurbo Sarkar & Zhengbing Wang, 2022. "An Integrated Assessment of Different Types of Environment-Friendly Technological Progress and Their Spatial Spillover Effects in the Chinese Agriculture Sector," Agriculture, MDPI, vol. 12(7), pages 1-24, July.
    20. Stančin, H. & Mikulčić, H. & Manić, N. & Stojiljiković, D. & Vujanović, M. & Wang, X. & Duić, N., 2021. "Thermogravimetric and kinetic analysis of biomass and polyurethane foam mixtures Co-Pyrolysis," Energy, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.