IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p2038-d746639.html
   My bibliography  Save this article

The Reuse of Municipal Solid Waste Fly Ash as Flame Retardant Filler: A Preliminary Study

Author

Listed:
  • Alessandra Zanoletti

    (INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy)

  • Luca Ciacci

    (Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum-University of Bologna, 40136 Bologna, Italy
    Interdepartmental Centre for Industrial Research “Renewable Resources, Environment, Sea and Energy”, Alma Mater Studiorum-University of Bologna, 40136 Bologna, Italy)

Abstract

The growing increase in the production of municipal solid waste incinerator (MSWI) ashes has led to the research of new possibilities to reuse these by-products. This work aims to use MSW fly ash (FA) as a flame retardant filler. The FA was stabilized according to a simple stabilization process involving the mixing of only different ashes: bottom ash (BA), flue gas desulphurization (FGD) residues and coal fly ash (CFA). Stabilized FA, calcite and commercial flame retardants were compared as additives in an epoxy resin or polypropylene (PP) matrix. The self-extinguish performance of fillers was evaluated by fire resistance tests: the vertical burning test (UL94-V) and glow wire test (GWT) at 750 °C and 850 °C. A life cycle assessment (LCA) evaluation was also performed to estimate the reduction in environmental impact related to the production of the flame retardant with stabilized FA. The results show that this new filler is a promising alternative to traditional flame retardant. The ignition time of composites with calcite was lower than the corresponding sample with FA. From an environmental point of view, the replacement of calcite in an epoxy resin matrix or commercial flame retardant in a PP matrix with stabilized FA allows for a reduction in the impact of about 24.1% and 49.5%, respectively.

Suggested Citation

  • Alessandra Zanoletti & Luca Ciacci, 2022. "The Reuse of Municipal Solid Waste Fly Ash as Flame Retardant Filler: A Preliminary Study," Sustainability, MDPI, vol. 14(4), pages 1-11, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2038-:d:746639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/2038/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/2038/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmad Assi & Fabjola Bilo & Alessandra Zanoletti & Jessica Ponti & Andrea Valsesia & Rita La Spina & Laura E. Depero & Elza Bontempi, 2020. "Review of the Reuse Possibilities Concerning Ash Residues from Thermal Process in a Medium-Sized Urban System in Northern Italy," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    2. Vilardi, Giorgio & Verdone, Nicola, 2022. "Exergy analysis of municipal solid waste incineration processes: The use of O2-enriched air and the oxy-combustion process," Energy, Elsevier, vol. 239(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catalina Dimulescu & Adrian Burlacu, 2021. "Industrial Waste Materials as Alternative Fillers in Asphalt Mixtures," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    2. Camilo Andrés Guerrero-Martin & Juan Sebastián Fernández-Ramírez & Jaime Eduardo Arturo-Calvache & Harvey Andrés Milquez-Sanabria & Fernando Antonio da Silva Fernandes & Vando José Costa Gomes & Wanes, 2023. "Exergy Load Distribution Analysis Applied to the Dehydration of Ethanol by Extractive Distillation," Energies, MDPI, vol. 16(8), pages 1-14, April.
    3. Eleonora Fiore & Barbara Stabellini & Paolo Tamborrini, 2020. "A Systemic Design Approach Applied to Rice and Wine Value Chains. The Case of the InnovaEcoFood Project in Piedmont (Italy)," Sustainability, MDPI, vol. 12(21), pages 1-28, November.
    4. Chen, Heng & Li, Jiarui & Li, Tongyu & Xu, Gang & Jin, Xi & Wang, Min & Liu, Tong, 2022. "Performance assessment of a novel medical-waste-to-energy design based on plasma gasification and integrated with a municipal solid waste incineration plant," Energy, Elsevier, vol. 245(C).
    5. Maria Bostenaru Dan & Magdalena Maria Bostenaru-Dan, 2021. "Greening the Brownfields of Thermal Power Plants in Rural Areas, an Example from Romania, Set in the Context of Developments in the Industrialized Country of Germany," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    6. Yang, Qingchun & Fan, Yingjie & Liu, Chenglin & Zhou, Jianlong & Zhao, Lei & Zhou, Huairong, 2023. "A promising alternative potential solution for sustainable and economical development of coal to ethylene glycol industry: Dimethyl oxalate to methyl glycolate process," Energy, Elsevier, vol. 277(C).
    7. Fu, Hongming & Xue, Kaili & Li, Zhaohao & Zhang, Heng & Gao, Dan & Chen, Haiping, 2023. "Study on the performance of CO2 capture from flue gas with ceramic and PTFE membrane contactors," Energy, Elsevier, vol. 263(PA).
    8. Wienchol, Paulina & Korus, Agnieszka & Szlęk, Andrzej & Ditaranto, Mario, 2022. "Thermogravimetric and kinetic study of thermal degradation of various types of municipal solid waste (MSW) under N2, CO2 and oxy-fuel conditions," Energy, Elsevier, vol. 248(C).
    9. Berkowicz-Płatek, Gabriela & Żukowski, Witold & Leski, Krystian, 2024. "Combustion of polyethylene and polypropylene in the fluidized bed with a variable vertical density profile," Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2038-:d:746639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.