IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v174y2019icp724-734.html
   My bibliography  Save this article

Investigation on fusion characteristics of deposition from biomass vibrating grate furnace combustion and its modification

Author

Listed:
  • Li, Fenghai
  • Li, Yang
  • Fan, Hongli
  • Wang, Tao
  • Guo, Mingxi
  • Fang, Yitian

Abstract

To mitigate increasing environmental pressures, biomass is becoming a crucial alternative energy source worldwide. Ash fusion characteristics of biomass has closely related to ash-related problems during its conversion. The fusion characteristics of cotton stalk (CS), the deposition from CS vibrating grate furnace combustion (DCS), and their modification mechanisms were investigated. The results indicate the sintering temperature (Ts) and ash fusion temperature (AFT) of DCS are lower than that of CS. Kaolinite causes obvious increases in the Ts and flow temperature, while the additions of calcite and Ca-sludge waste (Ca-W) make Dcs deformation temperature increase more obviously than that of flow temperature. That an increase in kalsilite content and leucite formation make the mixture Ts and AFT increase with increasing kaolinite proportion; the replacement of K+ in the silicates by Ca2+ causes the formations of high melting point Ca2+ silicates (e.g., rankinite and wollastonite) with increasing calcite or Ca-W, which makes their Ts and AFT increase. It is found that the deformation temperature corresponds to the temperature at which its liquid phase content at 15% or so based on FactSage calculation.

Suggested Citation

  • Li, Fenghai & Li, Yang & Fan, Hongli & Wang, Tao & Guo, Mingxi & Fang, Yitian, 2019. "Investigation on fusion characteristics of deposition from biomass vibrating grate furnace combustion and its modification," Energy, Elsevier, vol. 174(C), pages 724-734.
  • Handle: RePEc:eee:energy:v:174:y:2019:i:c:p:724-734
    DOI: 10.1016/j.energy.2019.02.154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219303536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Yongtie & Tay, Kunlin & Zheng, Zhimin & Yang, Wenming & Wang, Hui & Zeng, Guang & Li, Zhiwang & Keng Boon, Siah & Subbaiah, Prabakaran, 2018. "Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review," Applied Energy, Elsevier, vol. 230(C), pages 1447-1544.
    2. Zhou, Chunguang & Rosén, Christer & Engvall, Klas, 2016. "Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: Agglomeration behavior," Applied Energy, Elsevier, vol. 172(C), pages 230-250.
    3. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    4. Qi, Jianhui & Li, Hui & Han, Kuihua & Zuo, Qi & Gao, Jie & Wang, Qian & Lu, Chunmei, 2016. "Influence of ammonium dihydrogen phosphate on potassium retention and ash melting characteristics during combustion of biomass," Energy, Elsevier, vol. 102(C), pages 244-251.
    5. Liu, Yingzu & He, Yong & Wang, Zhihua & Xia, Jun & Wan, Kaidi & Whiddon, Ronald & Cen, Kefa, 2018. "Characteristics of alkali species release from a burning coal/biomass blend," Applied Energy, Elsevier, vol. 215(C), pages 523-531.
    6. Liu, Zhijia & Zhang, Tao & Zhang, Jian & Xiang, Hongzhong & Yang, Xiaomeng & Hu, Wanhe & Liang, Fang & Mi, Bingbing, 2018. "Ash fusion characteristics of bamboo, wood and coal," Energy, Elsevier, vol. 161(C), pages 517-522.
    7. Li, Fenghai & Li, Zhenzhu & Huang, Jiejie & Fang, Yitian, 2014. "Understanding mineral behaviors during anthracite fluidized-bed gasification based on slag characteristics," Applied Energy, Elsevier, vol. 131(C), pages 279-287.
    8. Pérez-Jeldres, Rubén & Flores, Mauricio & Cornejo, Pablo & Gordon, Alfredo & García, Ximena, 2018. "Co-firing of coal/biomass blends in a pilot plant facility: A comparative study between Opuntia ficus-indica and Pinus radiata," Energy, Elsevier, vol. 145(C), pages 1-16.
    9. Luan, Chao & You, Changfu & Zhang, Dongke, 2014. "Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace," Energy, Elsevier, vol. 69(C), pages 562-570.
    10. Wang, Liang & Skreiberg, Øyvind & Becidan, Michael & Li, Hailong, 2016. "Investigation of rye straw ash sintering characteristics and the effect of additives," Applied Energy, Elsevier, vol. 162(C), pages 1195-1204.
    11. Zevenhoven, Maria & Sevonius, Christoffer & Salminen, Patrik & Lindberg, Daniel & Brink, Anders & Yrjas, Patrik & Hupa, Leena, 2018. "Defluidization of the oxygen carrier ilmenite – Laboratory experiments with potassium salts," Energy, Elsevier, vol. 148(C), pages 930-940.
    12. Tarelho, L.A.C. & Teixeira, E.R. & Silva, D.F.R. & Modolo, R.C.E. & Labrincha, J.A. & Rocha, F., 2015. "Characteristics of distinct ash flows in a biomass thermal power plant with bubbling fluidised bed combustor," Energy, Elsevier, vol. 90(P1), pages 387-402.
    13. Ding, Lu & Gong, Yan & Wang, Yifei & Wang, Fuchen & Yu, Guangsuo, 2017. "Characterisation of the morphological changes and interactions in char, slag and ash during CO2 gasification of rice straw and lignite," Applied Energy, Elsevier, vol. 195(C), pages 713-724.
    14. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    15. Weigang Xu & Yanqing Niu & Houzhang Tan & Denghui Wang & Wenzhi Du & Shien Hui, 2013. "A New Agro/Forestry Residues Co-Firing Model in a Large Pulverized Coal Furnace: Technical and Economic Assessments," Energies, MDPI, vol. 6(9), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Fenghai & Yang, Ziqiang & Li, Yang & Han, Guopeng & Fan, Hongli & Liu, Xuefei & Xu, Meiling & Guo, Mingxi & Fang, Yitian, 2023. "The effects of Na2O/K2O flux on ash fusion characteristics for high silicon-aluminum coal in entrained-flow bed gasification," Energy, Elsevier, vol. 282(C).
    2. Nguyen, Hoang Khoi & Moon, Ji Hong & Jo, Sung Ho & Park, Sung Jin & Bae, Dal Hee & Seo, Myung Won & Ra, Ho Won & Yoon, Sang-Jun & Yoon, Sung-Min & Lee, Jae Goo & Mun, Tae-Young & Song, Byungho, 2021. "Ash characteristics of oxy-biomass combustion in a circulating fluidized bed with kaolin addition," Energy, Elsevier, vol. 230(C).
    3. Kobyłecki, Rafał & Zarzycki, Robert & Bis, Zbigniew & Panowski, Marcin & Wiński, Mateusz, 2021. "Numerical analysis of the combustion of straw and wood in a stoker boiler with vibrating grate," Energy, Elsevier, vol. 222(C).
    4. Wang, Qian & Han, Kuihua & Wang, Peifu & Li, Shijie & Zhang, Mingyang, 2020. "Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere," Energy, Elsevier, vol. 195(C).
    5. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    6. Li, Fenghai & Zhou, Meijie & zhao, Wei & Liu, Xuefei & Yang, Ziqiang & Fan, Hongli & Han, Guopeng & Li, Junguo & Xu, Meiling & Fang, Yitian, 2024. "Ash fusion behavior modification mechanisms of high-calcium coal by coal blending and its ash viscosity predication," Energy, Elsevier, vol. 288(C).
    7. Wang, Chang’an & Zhou, Lei & Fan, Gaofeng & Yuan, Maobo & Zhao, Lei & Tang, Guantao & Liu, Chengchang & Che, Defu, 2021. "Experimental study on ash morphology, fusibility, and mineral transformation during co-combustion of antibiotic filter residue and biomass," Energy, Elsevier, vol. 217(C).
    8. Li, Fenghai & Zhao, Chaoyue & Fan, Hongli & Xu, Meiling & Guo, Qianqian & Li, Yang & Wu, Lishun & Wang, Tao & Fang, Yitian, 2022. "Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition," Energy, Elsevier, vol. 251(C).
    9. Yao, Xiwen & Zhou, Haodong & Xu, Keqiang & Liu, Qinghua & Xu, Kaili, 2024. "Understanding impacts of introducing CO2 in N2 and operation conditions on physicochemical property and fusion behaviour of solid products during thermal decomposition of corn stalks," Renewable Energy, Elsevier, vol. 221(C).
    10. Berkowicz-Płatek, Gabriela & Żukowski, Witold & Leski, Krystian, 2024. "Combustion of polyethylene and polypropylene in the fluidized bed with a variable vertical density profile," Energy, Elsevier, vol. 286(C).
    11. Yao, Xiwen & Liu, Qinghua & Kang, Zijian & An, Zhixing & Zhou, Haodong & Xu, Kaili, 2023. "Quantitative study on thermal conversion behaviours and gas emission properties of biomass in nitrogen and in CO2/N2 mixtures by TGA/DTG and a fixed-bed tube furnace," Energy, Elsevier, vol. 270(C).
    12. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    13. Jiang, Jiahao & Tie, Yuan & Deng, Lei & Che, Defu, 2022. "Influence of water-washing pretreatment on ash fusibility of biomass," Renewable Energy, Elsevier, vol. 200(C), pages 125-135.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qian & Han, Kuihua & Wang, Peifu & Li, Shijie & Zhang, Mingyang, 2020. "Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere," Energy, Elsevier, vol. 195(C).
    2. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    3. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    4. Yao, Xiwen & Zheng, Yan & Zhou, Haodong & Xu, Kaili & Xu, Qingwei & Li, Li, 2020. "Effects of biomass blending, ashing temperature and potassium addition on ash sintering behaviour during co-firing of pine sawdust with a Chinese anthracite," Renewable Energy, Elsevier, vol. 147(P1), pages 2309-2320.
    5. Sakiewicz, Piotr & Piotrowski, Krzysztof & Kalisz, Sylwester, 2020. "Neural network prediction of parameters of biomass ashes, reused within the circular economy frame," Renewable Energy, Elsevier, vol. 162(C), pages 743-753.
    6. Chen, Xiaodong & Kong, Lingxue & Bai, Jin & Dai, Xin & Li, Huaizhu & Bai, Zongqing & Li, Wen, 2017. "The key for sodium-rich coal utilization in entrained flow gasifier: The role of sodium on slag viscosity-temperature behavior at high temperatures," Applied Energy, Elsevier, vol. 206(C), pages 1241-1249.
    7. Chen, Chunxiang & Huang, Yuting & Qin, Songheng & Huang, Dengchang & Bu, Xiaoyan & Huang, Haozhong, 2020. "Slagging tendency estimation of aquatic microalgae and comparison with terrestrial biomass and waste," Energy, Elsevier, vol. 194(C).
    8. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    9. Zhu, Yiming & Su, Haining & Qiu, Tongyu & Zhai, Yingmei & Mikulčić, Hrvoje & Wang, Xuebin & Zhang, Lan & Xie, Jun & Yang, Tianhua, 2024. "Modelling of fly ash viscous deposition and slagging prediction of biomass-fired boiler," Renewable Energy, Elsevier, vol. 227(C).
    10. Li, Guangyu & Xu, Shisen & Zhao, Xuebin & Sun, Ruijin & Wang, Chang’an & Liu, Kang & Mao, Qisen & Che, Defu, 2020. "Investigation of chemical composition and morphology of ash deposition in syngas cooler of an industrialized two-stage entrained-flow coal gasifier," Energy, Elsevier, vol. 194(C).
    11. Quan, Jinxia & Miao, Zhenwu & Lin, Yousheng & Lv, Juan & Liu, Hailu & Feng, Chunzhou & Jiang, Enchen & Hu, Zhifeng, 2023. "Agglomeration mechanism of Fe2O3/Al2O3 oxygen carrier in chemical looping gasification," Energy, Elsevier, vol. 284(C).
    12. Nguyen, Hoang Khoi & Moon, Ji Hong & Jo, Sung Ho & Park, Sung Jin & Bae, Dal Hee & Seo, Myung Won & Ra, Ho Won & Yoon, Sang-Jun & Yoon, Sung-Min & Lee, Jae Goo & Mun, Tae-Young & Song, Byungho, 2021. "Ash characteristics of oxy-biomass combustion in a circulating fluidized bed with kaolin addition," Energy, Elsevier, vol. 230(C).
    13. Hu, Wanhe & Liang, Fang & Xiang, Hongzhong & Zhang, Jian & Yang, Xiaomeng & Zhang, Tao & Mi, Bingbing & Liu, Zhijia, 2018. "Investigating co-firing characteristics of coal and masson pine," Renewable Energy, Elsevier, vol. 126(C), pages 563-572.
    14. Zhang, Heng & Hao, Zhenhua & Li, Junguo & Yang, Xin & Wang, Zhiqing & Liu, Zheyu & Huang, Jiejie & Zhang, Yongqi & Fang, Yitian, 2021. "Effect of coal ash additive on potassium fixation and melting behaviors of the mixture under simulated biomass gasification condition," Renewable Energy, Elsevier, vol. 168(C), pages 806-814.
    15. Chi, Hetian & Pans, Miguel A. & Sun, Chenggong & Liu, Hao, 2022. "Effectiveness of bed additives in abating agglomeration during biomass air/oxy combustion in a fluidised bed combustor," Renewable Energy, Elsevier, vol. 185(C), pages 945-958.
    16. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    17. Yi Zhang & Guanmin Zhang & Min Wei & Zhenqiang Gao & Maocheng Tian & Fang He, 2019. "Comparisons of Acid and Water Solubilities of Rice Straw Ash Together with Its Major Ash-Forming Elements at Different Ashing Temperatures: An Experimental Study," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    18. Jianhui Qi & Haopeng Li & Qian Wang & Kuihua Han, 2021. "Combustion Characteristics, Kinetics, SO 2 and NO Release of Low-Grade Biomass Materials and Briquettes," Energies, MDPI, vol. 14(9), pages 1-13, May.
    19. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    20. Liu, Zhuo & Li, Jianbo & Long, Xiaofei & Lu, Xiaofeng, 2022. "Mechanisms and characteristics of ash layer formation on bed particles during circulating fluidized bed combustion of Zhundong lignite," Energy, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:174:y:2019:i:c:p:724-734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.