IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223020005.html
   My bibliography  Save this article

Torrefaction as a way to increase the waste energy potential

Author

Listed:
  • Głód, Krzysztof
  • Lasek, Janusz A.
  • Supernok, Krzysztof
  • Pawłowski, Przemysław
  • Fryza, Rafał
  • Zuwała, Jarosław

Abstract

Torrefaction is the thermal treatment process that has beneficial effects to upgrade the properties of solid fuels. Torrefaction of waste is currently of special interest due to the possible improvements of waste properties in terms of its application as an energy source. The unfavorable properties of waste fuel (low grindability, low energy density, high moisture content, irregular shape and size, biological instability and hydrophilicity) can be significantly reduced by the application of the torrefaction process. This article focuses on the beneficial effects of municipal solid waste torrefaction. It was observed that the torrefaction significantly avoids the fragmentation of waste pellets during mechanical treatment and enhances the durability and hydrophobicity. Maximal water uptake after 72h immersion was 0.72 kg of water/kg of fuel (dry) in the case of raw MSW pellets, whereas this value in the case of torrefied MSW pellets was 0.34 kg of water/kg of fuel (dry). For torrefied MSW, the durability, the compression strength and the shear strength were kept at the almost invariable level of >99%, >3 MPa, and >33 MPa. Due to a poor ability to grind, a torrefied waste application should be rather considered in a fluidized bed or grate furnace technologies.

Suggested Citation

  • Głód, Krzysztof & Lasek, Janusz A. & Supernok, Krzysztof & Pawłowski, Przemysław & Fryza, Rafał & Zuwała, Jarosław, 2023. "Torrefaction as a way to increase the waste energy potential," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223020005
    DOI: 10.1016/j.energy.2023.128606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223020005
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Williams, Orla & Newbolt, Gary & Eastwick, Carol & Kingman, Sam & Giddings, Donald & Lormor, Stephen & Lester, Edward, 2016. "Influence of mill type on densified biomass comminution," Applied Energy, Elsevier, vol. 182(C), pages 219-231.
    2. Lasek, Janusz A. & Kopczyński, Marcin & Janusz, Marcin & Iluk, Andrzej & Zuwała, Jarosław, 2017. "Combustion properties of torrefied biomass obtained from flue gas-enhanced reactor," Energy, Elsevier, vol. 119(C), pages 362-368.
    3. Nobre, Catarina & Vilarinho, Cândida & Alves, Octávio & Mendes, Benilde & Gonçalves, Margarida, 2019. "Upgrading of refuse derived fuel through torrefaction and carbonization: Evaluation of RDF char fuel properties," Energy, Elsevier, vol. 181(C), pages 66-76.
    4. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Singh, Satyansh & Chakraborty, Jyoti Prasad & Mondal, Monoj Kumar, 2020. "Torrefaction of woody biomass (Acacia nilotica): Investigation of fuel and flow properties to study its suitability as a good quality solid fuel," Renewable Energy, Elsevier, vol. 153(C), pages 711-724.
    6. Barskov, Stan & Zappi, Mark & Buchireddy, Prashanth & Dufreche, Stephen & Guillory, John & Gang, Daniel & Hernandez, Rafael & Bajpai, Rakesh & Baudier, Jeff & Cooper, Robbyn & Sharp, Richard, 2019. "Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks," Renewable Energy, Elsevier, vol. 142(C), pages 624-642.
    7. Lui, Jade & Chen, Wei-Hsin & Tsang, Daniel C.W. & You, Siming, 2020. "A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Cheng, Wei & Shao, Jing'ai & Zhu, Youjian & Zhang, Wennan & Jiang, Hao & Hu, Junhao & Zhang, Xiong & Yang, Haiping & Chen, Hanping, 2022. "Effect of oxidative torrefaction on particulate matter emission from agricultural biomass pellet combustion in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 189(C), pages 39-51.
    9. Manouchehrinejad, Maryam & Bilek, E.M. Ted & Mani, Sudhagar, 2021. "Techno-economic analysis of integrated torrefaction and pelletization systems to produce torrefied wood pellets," Renewable Energy, Elsevier, vol. 178(C), pages 483-493.
    10. Lasek, Janusz A. & Głód, Krzysztof & Słowik, Krzysztof, 2021. "The co-combustion of torrefied municipal solid waste and coal in bubbling fluidised bed combustor under atmospheric and elevated pressure," Renewable Energy, Elsevier, vol. 179(C), pages 828-841.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulyekeen, Kabir Abogunde & Daud, Wan Mohd Ashri Wan & Patah, Muhamad Fazly Abdul, 2024. "Torrefaction of wood and garden wastes from municipal solid waste to enhanced solid fuel using helical screw rotation-induced fluidised bed reactor: Effect of particle size, helical screw speed and te," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sui, Haiqing & Chen, Jianfeng & Cheng, Wei & Zhu, Youjian & Zhang, Wennan & Hu, Junhao & Jiang, Hao & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of oxidative torrefaction on fuel and pelletizing properties of agricultural biomass in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 226(C).
    2. Cheng, Wei & Shao, Jing'ai & Zhu, Youjian & Zhang, Wennan & Jiang, Hao & Hu, Junhao & Zhang, Xiong & Yang, Haiping & Chen, Hanping, 2022. "Effect of oxidative torrefaction on particulate matter emission from agricultural biomass pellet combustion in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 189(C), pages 39-51.
    3. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Zhao, Zhong & Feng, Shuo & Zhao, Yaying & Wang, Zhuozhi & Ma, Jiao & Xu, Lianfei & Yang, Jiancheng & Shen, Boxiong, 2022. "Investigation on the fuel quality and hydrophobicity of upgraded rice husk derived from various inert and oxidative torrefaction conditions," Renewable Energy, Elsevier, vol. 189(C), pages 1234-1248.
    5. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Abdulyekeen, Kabir Abogunde & Daud, Wan Mohd Ashri Wan & Patah, Muhamad Fazly Abdul, 2024. "Torrefaction of wood and garden wastes from municipal solid waste to enhanced solid fuel using helical screw rotation-induced fluidised bed reactor: Effect of particle size, helical screw speed and te," Energy, Elsevier, vol. 293(C).
    7. Jagadale, Manisha & Gangil, Sandip & Jadhav, Mahesh, 2023. "Enhancing fuel characteristics of jute sticks (Corchorus Sp.) using fixed bed torrefaction process," Renewable Energy, Elsevier, vol. 215(C).
    8. Riaz, Sajid & Oluwoye, Ibukun & Al-Abdeli, Yasir M., 2022. "Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics," Renewable Energy, Elsevier, vol. 199(C), pages 908-918.
    9. Onsree, Thossaporn & Tippayawong, Nakorn, 2021. "Machine learning application to predict yields of solid products from biomass torrefaction," Renewable Energy, Elsevier, vol. 167(C), pages 425-432.
    10. Adeleke, Adekunle A. & Ikubanni, Peter P. & Emmanuel, Stephen S. & Fajobi, Moses O. & Nwachukwu, Praise & Adesibikan, Ademidun A. & Odusote, Jamiu K. & Adeyemi, Emmanuel O. & Abioye, Oluwaseyi M. & Ok, 2024. "A comprehensive review on the similarity and disparity of torrefied biomass and coal properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Catarina Viegas & Catarina Nobre & Ricardo Correia & Luísa Gouveia & Margarida Gonçalves, 2021. "Optimization of Biochar Production by Co-Torrefaction of Microalgae and Lignocellulosic Biomass Using Response Surface Methodology," Energies, MDPI, vol. 14(21), pages 1-23, November.
    12. Lin, Yi-Li & Zheng, Nai-Yun, 2021. "Torrefaction of fruit waste seed and shells for biofuel production with reduced CO2 emission," Energy, Elsevier, vol. 225(C).
    13. Paredes, B.M. & Paredes, J.P. & García, R., 2023. "Integration of biocoal in distributed energy systems: A potential case study in the Spanish coal-mining regions," Energy, Elsevier, vol. 263(PC).
    14. Piotr Piersa & Szymon Szufa & Justyna Czerwińska & Hilal Ünyay & Łukasz Adrian & Grzegorz Wielgosinski & Andrzej Obraniak & Wiktoria Lewandowska & Marta Marczak-Grzesik & Maria Dzikuć & Zdzislawa Roma, 2021. "Pine Wood and Sewage Sludge Torrefaction Process for Production Renewable Solid Biofuels and Biochar as Carbon Carrier for Fertilizers," Energies, MDPI, vol. 14(23), pages 1-27, December.
    15. Korshunov, Alexey & Kichatov, Boris & Melnikova, Ksenia & Gubernov, Vladimir & Yakovenko, Ivan & Kiverin, Alexey & Golubkov, Alexandr, 2019. "Pyrolysis characteristics of biomass torrefied in a quiescent mineral layer," Energy, Elsevier, vol. 187(C).
    16. Verma, Shivpal & Dregulo, Andrei Mikhailovich & Kumar, Vinay & Bhargava, Preeti Chaturvedi & Khan, Nawaz & Singh, Anuradha & Sun, Xinwei & Sindhu, Raveendran & Binod, Parameswaran & Zhang, Zengqiang &, 2023. "Reaction engineering during biomass gasification and conversion to energy," Energy, Elsevier, vol. 266(C).
    17. Zhao, Xiqiang & Zhou, Xing & Wang, Guoxiu & Zhou, Ping & Wang, Wenlong & Song, Zhanlong, 2022. "Evaluating the effect of torrefaction on the pyrolysis of biomass and the biochar catalytic performance on dry reforming of methane," Renewable Energy, Elsevier, vol. 192(C), pages 313-325.
    18. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    19. Wijayasekera, Sachindra Chamode & Hewage, Kasun & Hettiaratchi, Patrick & Razi, Faran & Sadiq, Rehan, 2023. "Planning and development of waste-to-hydrogen conversion facilities: A parametric analysis," Energy, Elsevier, vol. 278(PA).
    20. Kostyniuk, Andrii & Likozar, Blaž, 2024. "Wet torrefaction of biomass waste into high quality hydrochar and value-added liquid products using different zeolite catalysts," Renewable Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223020005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.