IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224023806.html
   My bibliography  Save this article

Thermodynamic analysis of a solar-assisted supercritical water gasification system for poly-generation of hydrogen-heat-power production from waste plastics

Author

Listed:
  • Sun, Jianlong
  • Bai, Bin
  • Yu, Xinyue
  • Wang, Yujie
  • Zhou, Weihong
  • Jin, Hui

Abstract

The resource utilization of waste plastics is an effective approach to address the issue of energy shortage. In this study, a comprehensive disposal system for polypropylene plastics was designed by supercritical water gasification coupled with a solar heat collector for poly-generation of power, hydrogen, and heat. The study first demonstrated the transfer behavior and exchange capacity of different streams throughout the entire system. It was found that the disposal system maintained mass conservation by checking the material streams. The thermodynamic results indicated that the largest exergy losses occurred in the oxidizer, accounting for 50.2 % of the total system exergy loss, followed by the heat exchanger at 14.51 %, with other units remaining below 10 %. A sensitivity analysis demonstrated that feedstock concentration significantly impacted exergy efficiency and output steams. Exergy efficiency rose from 49.5 % to 58 % as feedstock concentration increased from 5 wt% to 20 wt%. In contrast, changes in oxidation temperature had a slightly impact, with output power rising slightly from 9089 kW to 9598 kW. The effect of gasification temperature was intermediate between them. Finally, an optimal gasification conditions achieved 58.47 % exergy efficiency at 800 °C gasification, 960 °C oxidation with 5 wt% feed, producing 9496 kW of power, 76.2 kg/h of hydrogen, and 144.7 t/h of hot water.

Suggested Citation

  • Sun, Jianlong & Bai, Bin & Yu, Xinyue & Wang, Yujie & Zhou, Weihong & Jin, Hui, 2024. "Thermodynamic analysis of a solar-assisted supercritical water gasification system for poly-generation of hydrogen-heat-power production from waste plastics," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023806
    DOI: 10.1016/j.energy.2024.132606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224023806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Beomhui & Im, Seong-kyun, 2024. "Energy, exergy, and exergoeconomic analyses of plastic waste-to-energy integrated gasification combined cycles with and without heat recovery at a gasifier," Applied Energy, Elsevier, vol. 355(C).
    2. Kumar, Pankaj & Kumar, Vinod & Singh, Jogendra & Kumar, Piyush, 2021. "Electrokinetic assisted anaerobic digestion of spent mushroom substrate supplemented with sugar mill wastewater for enhanced biogas production," Renewable Energy, Elsevier, vol. 179(C), pages 418-426.
    3. Zhan, Yuanhang & Zhu, Jun, 2024. "Response surface methodology and artificial neural network-genetic algorithm for modeling and optimization of bioenergy production from biochar-improved anaerobic digestion," Applied Energy, Elsevier, vol. 355(C).
    4. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    5. Chen, Jingwei & Fu, Liangyu & Tian, Ming & Kang, Siyi & E, Jiaqiang, 2022. "Comparison and synergistic effect analysis on supercritical water gasification of waste thermoplastic plastics based on orthogonal experiments," Energy, Elsevier, vol. 261(PA).
    6. Wang, Yu & Ren, Changyifan & Guo, Shenghui & Liu, Shi & Du, Mingming & Chen, Yunan & Guo, Liejin, 2023. "Thermodynamic and environmental analysis of heat supply in pig manure supercritical water gasification system," Energy, Elsevier, vol. 263(PA).
    7. Bai, Bin & Wang, Weizuo & Jin, Hui, 2020. "Experimental study on gasification performance of polypropylene (PP) plastics in supercritical water," Energy, Elsevier, vol. 191(C).
    8. Bai, Bin & Liu, Yigang & Wang, Qiuxia & Zou, Jian & Zhang, Hua & Jin, Hui & Li, Xianwen, 2019. "Experimental investigation on gasification characteristics of plastic wastes in supercritical water," Renewable Energy, Elsevier, vol. 135(C), pages 32-40.
    9. Ismail, Mohamed M. & Dincer, Ibrahim, 2023. "A new renewable energy based integrated gasification system for hydrogen production from plastic wastes," Energy, Elsevier, vol. 270(C).
    10. Avila-Marin, A.L. & Fernandez-Reche, J. & Martinez-Tarifa, A., 2019. "Modelling strategies for porous structures as solar receivers in central receiver systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 15-33.
    11. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    12. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    13. Rizki Rinanda & Yunan Sun & Keke Chang & Rini Sulastri & Xiaoqiang Cui & Zhanjun Cheng & Beibei Yan & Guanyi Chen, 2023. "Plastic Waste Management: A Bibliometric Analysis (1992–2022)," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    14. Mergenthaler, Pieter & Schinkel, Arndt-Peter & Tsatsaronis, George, 2017. "Application of exergoeconomic, exergoenvironmental, and advanced exergy analyses to Carbon Black production," Energy, Elsevier, vol. 137(C), pages 898-907.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Yi & Paul, Manosh C. & Varjani, Sunita & Li, Xian & Park, Young-Kwon & You, Siming, 2021. "Concentrated solar thermochemical gasification of biomass: Principles, applications, and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    4. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    5. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
    7. Gutiérrez, R.E. & Haro, P. & Gómez-Barea, A., 2021. "Techno-economic and operational assessment of concentrated solar power plants with a dual supporting system," Applied Energy, Elsevier, vol. 302(C).
    8. Martínez-Merino, Paloma & Alcántara, Rodrigo & Gómez-Larrán, Pedro & Carrillo-Berdugo, Iván & Navas, Javier, 2022. "MoS2-based nanofluids as heat transfer fluid in parabolic trough collector technology," Renewable Energy, Elsevier, vol. 188(C), pages 721-730.
    9. Chanfreut, Paula & Maestre, José M. & Gallego, Antonio J. & Annaswamy, Anuradha M. & Camacho, Eduardo F., 2023. "Clustering-based model predictive control of solar parabolic trough plants," Renewable Energy, Elsevier, vol. 216(C).
    10. Stefania Guarino & Pietro Catrini & Alessandro Buscemi & Valerio Lo Brano & Antonio Piacentino, 2021. "Assessing the Energy-Saving Potential of a Dish-Stirling Con-Centrator Integrated Into Energy Plants in the Tertiary Sector," Energies, MDPI, vol. 14(4), pages 1-23, February.
    11. Qimei Chen & Yan Wang & Jianhan Zhang & Zhifeng Wang, 2020. "The Knowledge Mapping of Concentrating Solar Power Development Based on Literature Analysis Technology," Energies, MDPI, vol. 13(8), pages 1-15, April.
    12. Palacios, A. & Barreneche, C. & Navarro, M.E. & Ding, Y., 2020. "Thermal energy storage technologies for concentrated solar power – A review from a materials perspective," Renewable Energy, Elsevier, vol. 156(C), pages 1244-1265.
    13. Zhang, Bowei & Guo, Simao & Jin, Hui, 2022. "Production forecast analysis of BP neural network based on Yimin lignite supercritical water gasification experiment results," Energy, Elsevier, vol. 246(C).
    14. Cristina Prieto & David Pérez Osorio & Edouard Gonzalez-Roubaud & Sonia Fereres & Luisa F. Cabeza, 2021. "Advanced Concrete Steam Accumulation Tanks for Energy Storage for Solar Thermal Electricity," Energies, MDPI, vol. 14(13), pages 1-26, June.
    15. Miguel Ángel Reyes-Belmonte, 2020. "A Bibliometric Study on Integrated Solar Combined Cycles (ISCC), Trends and Future Based on Data Analytics Tools," Sustainability, MDPI, vol. 12(19), pages 1-29, October.
    16. Paloma Martínez-Merino & Rodrigo Alcántara & Teresa Aguilar & Juan Jesús Gallardo & Iván Carrillo-Berdugo & Roberto Gómez-Villarejo & Mabel Rodríguez-Fernández & Javier Navas, 2019. "Stability and Thermal Properties Study of Metal Chalcogenide-Based Nanofluids for Concentrating Solar Power," Energies, MDPI, vol. 12(24), pages 1-11, December.
    17. Jingyu Zhong & Jing Ding & Jianfeng Lu & Xiaolan Wei & Weilong Wang, 2022. "Thermal Stability Calculation and Experimental Investigation of Common Binary Chloride Molten Salts Applied in Concentrating Solar Power Plants," Energies, MDPI, vol. 15(7), pages 1-31, March.
    18. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Perez-Maqueda, L.A. & Giménez, P., 2019. "The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. José M. Cardemil & Allan R. Starke & Adriana Zurita & Carlos Mata‐Torres & Rodrigo Escobar, 2021. "Integration schemes for hybrid and polygeneration concentrated solar power plants," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(6), November.
    20. Chen, Zhijie & Wei, Wei & Chen, Xueming & Liu, Yiwen & Shen, Yansong & Ni, Bing-Jie, 2024. "Upcycling of plastic wastes for hydrogen production: Advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.