IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v57y2013icp421-426.html
   My bibliography  Save this article

Combustion behavior and pollutant emission characteristics of RDF (refuse derived fuel) and sawdust in a vortexing fluidized bed combustor

Author

Listed:
  • Duan, Feng
  • Liu, Jian
  • Chyang, Chien-Song
  • Hu, Chun-Hsuan
  • Tso, Jim

Abstract

This paper presents the results obtained from RDF and sawdust combustion in a pilot scale vortexing fluidized bed combustor (VFBC). Flue gas recirculation (FGR) combustion mode was employed. The effects of operating parameters such as bed temperature, excess oxygen ratio, and in-bed stoichiometric oxygen ratio on the combustion behavior and pollutant emission characteristics were investigated. The experimental results show the different combustion characteristics with different fuels in the VFBC. For sawdust combustion, CO emission decreases with bed temperature, excess oxygen ratio, and in-bed stoichiometric oxygen ratio. The NOx emission shows an inverse trend. Combustion using sawdust as the fuel has difficulty meeting the CO emission regulation requirement. The CO and NOx emissions of RDF combustion show a similar trend as that of sawdust; however RDF combustion can significantly decrease the CO emission due to its distinct pellet structure and burning pattern.

Suggested Citation

  • Duan, Feng & Liu, Jian & Chyang, Chien-Song & Hu, Chun-Hsuan & Tso, Jim, 2013. "Combustion behavior and pollutant emission characteristics of RDF (refuse derived fuel) and sawdust in a vortexing fluidized bed combustor," Energy, Elsevier, vol. 57(C), pages 421-426.
  • Handle: RePEc:eee:energy:v:57:y:2013:i:c:p:421-426
    DOI: 10.1016/j.energy.2013.04.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213004374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.04.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Zhi-Ao & Jin, Bao-Sheng & Zhang, Ming-Yao & Liu, Ren-Ping & Zhang, Yong, 2008. "Experimental study on cotton stalk combustion in a circulating fluidized bed," Applied Energy, Elsevier, vol. 85(11), pages 1027-1040, November.
    2. McDonnell, K. & Desmond, J. & Leahy, J.J. & Howard-Hildige, R. & Ward, S., 2001. "Behaviour of meat and bonemeal/peat pellets in a bench scale fluidised bed combustor," Energy, Elsevier, vol. 26(1), pages 81-90.
    3. Sun, Z. & Jin, B. & Zhang, M. & Liu, R. & Zhang, Y., 2008. "Experimental studies on cotton stalk combustion in a fluidized bed," Energy, Elsevier, vol. 33(8), pages 1224-1232.
    4. Kuprianov, Vladimir I. & Kaewklum, Rachadaporn & Chakritthakul, Songpol, 2011. "Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel," Energy, Elsevier, vol. 36(4), pages 2038-2048.
    5. Tran, Luc Sy & Sirjean, Baptiste & Glaude, Pierre-Alexandre & Fournet, René & Battin-Leclerc, Frédérique, 2012. "Progress in detailed kinetic modeling of the combustion of oxygenated components of biofuels," Energy, Elsevier, vol. 43(1), pages 4-18.
    6. El may, Yassine & Jeguirim, Mejdi & Dorge, Sophie & Trouvé, Gwenaelle & Said, Rachid, 2012. "Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres," Energy, Elsevier, vol. 44(1), pages 702-709.
    7. Youssef, Mahmoud A. & Wahid, Seddik S. & Mohamed, Maher A. & Askalany, Ahmed A., 2009. "Experimental study on Egyptian biomass combustion in circulating fluidized bed," Applied Energy, Elsevier, vol. 86(12), pages 2644-2650, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Songshan & Duan, Feng & Zhang, Lihui & Chyang, ChienSong & Yang, ChihYun, 2017. "Application of response surface methodology to determine effects of operational conditions on in-bed combustion fraction in vortexing fluidized-bed combustor using different fuels," Energy, Elsevier, vol. 139(C), pages 862-870.
    2. Hu, Jianjun & Lei, Tingzhou & Wang, Zhiwei & Yan, Xiaoyu & Shi, Xinguang & Li, Zaifeng & He, Xiaofeng & Zhang, Quanguo, 2014. "Economic, environmental and social assessment of briquette fuel from agricultural residues in China – A study on flat die briquetting using corn stalk," Energy, Elsevier, vol. 64(C), pages 557-566.
    3. Choi, Yujin & Jun, Hyunji & Shin, Jong Seon & Han, Keun-Hee & Bae, Dal Hee & Hwang, Byung Wook & Kim, Hong Jip & Shun, Dowon, 2020. "Effects of boron compounds on decomposition of chlorides to control clinkers under solid refuse fuel combustion conditions," Energy, Elsevier, vol. 210(C).
    4. Chen, Jia & Fang, Dongdong & Duan, Feng, 2018. "Pore characteristics and fractal properties of biochar obtained from the pyrolysis of coarse wood in a fluidized-bed reactor," Applied Energy, Elsevier, vol. 218(C), pages 54-65.
    5. Fang, Dong-dong & Chen, Jia & Zhang, Li-hui & Duan, Feng & Wang, Ping & Chyang, Chien-Song, 2017. "Experimental study on the shrinkage characteristics and devolatilization time of wood in a turbulent fluidized bed combustor using computed tomography," Energy, Elsevier, vol. 141(C), pages 348-357.
    6. Chavando, José Antonio Mayoral & Silva, Valter Bruno & Tarelho, Luís A.C. & Cardoso, João Sousa & Eusébio, Daniela, 2022. "Snapshot review of refuse-derived fuels," Utilities Policy, Elsevier, vol. 74(C).
    7. Berkowicz-Płatek, Gabriela & Żukowski, Witold & Leski, Krystian, 2024. "Combustion of polyethylene and polypropylene in the fluidized bed with a variable vertical density profile," Energy, Elsevier, vol. 286(C).
    8. Sorrentino, Giancarlo & Sabia, Pino & Bozza, Pio & Ragucci, Raffaele & de Joannon, Mara, 2017. "Impact of external operating parameters on the performance of a cyclonic burner with high level of internal recirculation under MILD combustion conditions," Energy, Elsevier, vol. 137(C), pages 1167-1174.
    9. Zhang, Li-hui & Chyang, Chien-Song & Duan, Feng & Li, Pin-Wei & Chen, Sing-Yu, 2016. "Comparison of the thermal behaviors and pollutant emissions of pelletized bamboo combustion in a fluidized bed combustor at different secondary gas injection modes," Energy, Elsevier, vol. 116(P1), pages 306-316.
    10. Li, Pin-Wei & Chyang, Chien-Song & Ni, Hung-Wen, 2018. "An experimental study of the effect of nitrogen origin on the formation and reduction of NOx in fluidized-bed combustion," Energy, Elsevier, vol. 154(C), pages 319-327.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arromdee, Porametr & Kuprianov, Vladimir I., 2012. "Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material," Applied Energy, Elsevier, vol. 97(C), pages 470-482.
    2. Vamvuka, Despina & Sfakiotakis, Stelios & Kotronakis, Manolis, 2012. "Fluidized bed combustion of residues from oranges’ plantations and processing," Renewable Energy, Elsevier, vol. 44(C), pages 231-237.
    3. Kuprianov, Vladimir I. & Kaewklum, Rachadaporn & Chakritthakul, Songpol, 2011. "Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel," Energy, Elsevier, vol. 36(4), pages 2038-2048.
    4. Ren, Qiangqiang & Zhao, Changsui, 2015. "Evolution of fuel-N in gas phase during biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 408-418.
    5. Kuprianov, Vladimir I. & Kaewklum, Rachadaporn & Sirisomboon, Kasama & Arromdee, Porametr & Chakritthakul, Songpol, 2010. "Combustion and emission characteristics of a swirling fluidized-bed combustor burning moisturized rice husk," Applied Energy, Elsevier, vol. 87(9), pages 2899-2906, September.
    6. Tao, Guangcan & Lestander, Torbjörn A. & Geladi, Paul & Xiong, Shaojun, 2012. "Biomass properties in association with plant species and assortments I: A synthesis based on literature data of energy properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3481-3506.
    7. Ninduangdee, Pichet & Kuprianov, Vladimir I., 2016. "A study on combustion of oil palm empty fruit bunch in a fluidized bed using alternative bed materials: Performance, emissions, and time-domain changes in the bed condition," Applied Energy, Elsevier, vol. 176(C), pages 34-48.
    8. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    9. Guo, Feihong & Liu, Weizhen & He, Yi & Li, Xinjun & Zhang, Houhu, 2024. "Study on the combustion characteristics and pollutant emissions of cold-pressed pellets and pellet powders in fluidized-bed," Renewable Energy, Elsevier, vol. 220(C).
    10. Tao, Guangcan & Geladi, Paul & Lestander, Torbjörn A. & Xiong, Shaojun, 2012. "Biomass properties in association with plant species and assortments. II: A synthesis based on literature data for ash elements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3507-3522.
    11. Said, N. & El-Shatoury, S.A. & Díaz, L.F. & Zamorano, M., 2013. "Quantitative appraisal of biomass resources and their energy potential in Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 84-91.
    12. Sher, Farooq & Pans, Miguel A. & Afilaka, Daniel T. & Sun, Chenggong & Liu, Hao, 2017. "Experimental investigation of woody and non-woody biomass combustion in a bubbling fluidised bed combustor focusing on gaseous emissions and temperature profiles," Energy, Elsevier, vol. 141(C), pages 2069-2080.
    13. Zhang, Li-hui & Chyang, Chien-Song & Duan, Feng & Li, Pin-Wei & Chen, Sing-Yu, 2016. "Comparison of the thermal behaviors and pollutant emissions of pelletized bamboo combustion in a fluidized bed combustor at different secondary gas injection modes," Energy, Elsevier, vol. 116(P1), pages 306-316.
    14. Hung-Ta Wen & Jau-Huai Lu & Mai-Xuan Phuc, 2021. "Applying Artificial Intelligence to Predict the Composition of Syngas Using Rice Husks: A Comparison of Artificial Neural Networks and Gradient Boosting Regression," Energies, MDPI, vol. 14(10), pages 1-18, May.
    15. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    16. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    17. Kraiem, Nesrine & Jeguirim, Mejdi & Limousy, Lionel & Lajili, Marzouk & Dorge, Sophie & Michelin, Laure & Said, Rachid, 2014. "Impregnation of olive mill wastewater on dry biomasses: Impact on chemical properties and combustion performances," Energy, Elsevier, vol. 78(C), pages 479-489.
    18. Han, S.-H. & Cho, D.H. & Kim, Y.H. & Shin, S.-J., 2013. "Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone–butanol–ethanol fermentation," Energy, Elsevier, vol. 61(C), pages 13-17.
    19. Youssef, Mahmoud A. & Wahid, Seddik S. & Mohamed, Maher A. & Askalany, Ahmed A., 2009. "Experimental study on Egyptian biomass combustion in circulating fluidized bed," Applied Energy, Elsevier, vol. 86(12), pages 2644-2650, December.
    20. Tan, Zhongxin & Lagerkvist, Anders, 2011. "Phosphorus recovery from the biomass ash: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3588-3602.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:57:y:2013:i:c:p:421-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.