IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v165y2018ipbp140-152.html
   My bibliography  Save this article

Thermodynamic study on a novel lignite poly-generation system of electricity-gas-tar integrated with pre-drying and pyrolysis

Author

Listed:
  • Liu, Rongtang
  • Liu, Ming
  • Fan, Peipei
  • Zhao, Yongliang
  • Yan, Junjie

Abstract

The efficient and clean use of lignite is strategically important to sustainable development. Predrying technology is a competitive approach to solve the utilization issue of the high moisture, and the pyrolysis technology is an ideal upgrading method to realize high value-added components extraction. However, the two technologies are normally used separately. By integrating the two technologies, the cascade utilization of energy may be realized, and the utilization efficiency of lignite may be increased accordingly. Therefore, a steam predrying coupled with lignite-pyrolysis power system (PPPS) is proposed in this paper. Theoretical models are developed on the basis of thermodynamics to assess the properties of the proposed system, and a case analysis is performed to determine the quantitative consequences of the PPPS. Moreover, energy and exergy analyses are performed to uncover the energy saving mechanism. Results indicate that the proposed system can evidently increase the thermal efficiency by approximately 4.43% relatively based on the higher heating value, and by approximately 4.45% relatively based on the lower heating value. The PPPS can noticeably increase the exergy efficiency by approximately 4.48% relatively owing to the integration of the lignite predrying and pyrolysis technologies.

Suggested Citation

  • Liu, Rongtang & Liu, Ming & Fan, Peipei & Zhao, Yongliang & Yan, Junjie, 2018. "Thermodynamic study on a novel lignite poly-generation system of electricity-gas-tar integrated with pre-drying and pyrolysis," Energy, Elsevier, vol. 165(PB), pages 140-152.
  • Handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:140-152
    DOI: 10.1016/j.energy.2018.09.169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218319418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Xiaoqu & Liu, Ming & Wu, Kaili & Chen, Weixiong & Xiao, Feng & Yan, Junjie, 2016. "Exergy analysis of the flue gas pre-dried lignite-fired power system based on the boiler with open pulverizing system," Energy, Elsevier, vol. 106(C), pages 285-300.
    2. Shao, Yuanyuan & Wang, Jinsheng & Xu, Chunbao (Charles) & Zhu, Jesse & Preto, Fernando & Tourigny, Guy & Badour, Chadi & Li, Hanning, 2011. "An experimental and modeling study of ash deposition behaviour for co-firing peat with lignite," Applied Energy, Elsevier, vol. 88(8), pages 2635-2640, August.
    3. Jin, Sung Ho & Lee, Hyung Won & Ryu, Changkook & Jeon, Jong-Ki & Park, Young-Kwon, 2015. "Catalytic fast pyrolysis of Geodae-Uksae 1 over zeolites," Energy, Elsevier, vol. 81(C), pages 41-46.
    4. Huang, Y.W. & Chen, M.Q. & Li, Q.H. & Xing, W., 2018. "A critical evaluation on chemical exergy and its correlation with high heating value for single and multi-component typical plastic wastes," Energy, Elsevier, vol. 156(C), pages 548-554.
    5. Han, Xiaoqu & Liu, Ming & Zhai, Mengxu & Chong, Daotong & Yan, Junjie & Xiao, Feng, 2015. "Investigation on the off-design performances of flue gas pre-dried lignite-fired power system integrated with waste heat recovery at variable external working conditions," Energy, Elsevier, vol. 90(P2), pages 1743-1758.
    6. Qian, Hongliang & Zhu, Weiwei & Fan, Sudong & Liu, Chang & Lu, Xiaohua & Wang, Zhixiang & Huang, Dechun & Chen, Wei, 2017. "Prediction models for chemical exergy of biomass on dry basis from ultimate analysis using available electron concepts," Energy, Elsevier, vol. 131(C), pages 251-258.
    7. Ma, Rui & Sun, Shichang & Geng, Haihong & Fang, Lin & Zhang, Peixin & Zhang, Xianghua, 2018. "Study on the characteristics of microwave pyrolysis of high-ash sludge, including the products, yields, and energy recovery efficiencies," Energy, Elsevier, vol. 144(C), pages 515-525.
    8. Babler, Matthaus U. & Phounglamcheik, Aekjuthon & Amovic, Marko & Ljunggren, Rolf & Engvall, Klas, 2017. "Modeling and pilot plant runs of slow biomass pyrolysis in a rotary kiln," Applied Energy, Elsevier, vol. 207(C), pages 123-133.
    9. Chattopadhyay, Jayeeta & Pathak, T.S. & Srivastava, R. & Singh, A.C., 2016. "Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis," Energy, Elsevier, vol. 103(C), pages 513-521.
    10. Duan, Wenjun & Yu, Qingbo & Xie, Huaqing & Qin, Qin, 2017. "Pyrolysis of coal by solid heat carrier-experimental study and kinetic modeling," Energy, Elsevier, vol. 135(C), pages 317-326.
    11. Koroneos, Christopher J. & Fokaides, Paris A. & Christoforou, Elias A., 2014. "Exergy analysis of a 300 MW lignite thermoelectric power plant," Energy, Elsevier, vol. 75(C), pages 304-311.
    12. Atienza-Martínez, María & Ábrego, Javier & Mastral, José Francisco & Ceamanos, Jesús & Gea, Gloria, 2018. "Energy and exergy analyses of sewage sludge thermochemical treatment," Energy, Elsevier, vol. 144(C), pages 723-735.
    13. Chen, Xiaohui & Zheng, Danxing & Guo, Jing & Liu, Jingxiao & Ji, Peijun, 2013. "Energy analysis for low-rank coal based process system to co-produce semicoke, syngas and light oil," Energy, Elsevier, vol. 52(C), pages 279-288.
    14. Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.
    15. Wang, Chaoyang & Zhao, Yongliang & Liu, Ming & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio," Applied Energy, Elsevier, vol. 216(C), pages 212-223.
    16. Atsonios, K. & Violidakis, I. & Sfetsioris, K. & Rakopoulos, D.C. & Grammelis, P. & Kakaras, E., 2016. "Pre-dried lignite technology implementation in partial load/low demand cases for flexibility enhancement," Energy, Elsevier, vol. 96(C), pages 427-436.
    17. Kim, Daegi & Park, Seyong & Park, Ki Young, 2017. "Upgrading the fuel properties of sludge and low rank coal mixed fuel through hydrothermal carbonization," Energy, Elsevier, vol. 141(C), pages 598-602.
    18. Song, Guohui & Xiao, Jun & Zhao, Hao & Shen, Laihong, 2012. "A unified correlation for estimating specific chemical exergy of solid and liquid fuels," Energy, Elsevier, vol. 40(1), pages 164-173.
    19. Yan, Binhang & Cheng, Yan & Li, Tianyang & Cheng, Yi, 2017. "Detailed kinetic modeling of acetylene decomposition/soot formation during quenching of coal pyrolysis in thermal plasma," Energy, Elsevier, vol. 121(C), pages 10-20.
    20. Wang, Jia & Zhong, Zhaoping & Ding, Kuan & Zhang, Bo & Deng, Aidong & Min, Min & Chen, Paul & Ruan, Roger, 2017. "Co-pyrolysis of bamboo residual with waste tire over dual catalytic stage of CaO and co-modified HZSM-5," Energy, Elsevier, vol. 133(C), pages 90-98.
    21. Carvalho, Wender Santana & Santana Júnior, José Alair & de Oliveira, Tiago José Pires & Ataíde, Carlos Henrique, 2017. "Fast pyrolysis of sweet sorghum bagasse in a fluidized bed reactor: Product characterization and comparison with vapors generated in analytical pyrolysis," Energy, Elsevier, vol. 131(C), pages 186-197.
    22. Song, Zhanlong & Liu, Li & Yang, Yaqing & Sun, Jing & Zhao, Xiqiang & Wang, Wenlong & Mao, Yanpeng & Yuan, Xueliang & Wang, Qingsong, 2018. "Characteristics of limonene formation during microwave pyrolysis of scrap tires and quantitative analysis," Energy, Elsevier, vol. 142(C), pages 953-961.
    23. Guo, Feiqiang & Li, Xiaolei & Wang, Yan & Liu, Yuan & Li, Tiantao & Guo, Chenglong, 2017. "Characterization of Zhundong lignite and biomass co-pyrolysis in a thermogravimetric analyzer and a fixed bed reactor," Energy, Elsevier, vol. 141(C), pages 2154-2163.
    24. Park, Sang-Woo & Jang, Cheol-Hyeon & Baek, Kyung-Ryul & Yang, Jae-Kyung, 2012. "Torrefaction and low-temperature carbonization of woody biomass: Evaluation of fuel characteristics of the products," Energy, Elsevier, vol. 45(1), pages 676-685.
    25. Zhang, Qian & Li, Qingfeng & Zhang, Linxian & Yu, Zhongliang & Jing, Xuliang & Wang, Zhiqing & Fang, Yitian & Huang, Wei, 2017. "Experimental study on co-pyrolysis and gasification of biomass with deoiled asphalt," Energy, Elsevier, vol. 134(C), pages 301-310.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Haojie Gao & Zhisong Wen & Lizhu Jin & Xin Xiong & Yuezhao Zhu, 2022. "Gasification Characteristics of High Moisture Content Lignite under CO 2 and Auto-Generated Steam Atmosphere in a Moving Bed Tubular Reactor," Energies, MDPI, vol. 15(18), pages 1-10, September.
    3. Li, Hong & Zhou, Hao & Liu, Kailong & Gao, Xin & Li, Xingang, 2021. "Retrofit application of traditional petroleum chemical technologies to coal chemical industry for sustainable energy-efficiency production," Energy, Elsevier, vol. 218(C).
    4. Huo, Hailong & Liu, Xunliang & Wen, Zhi & Lou, Guofeng & Dou, Ruifeng & Su, Fuyong & Zhou, Wenning & Jiang, Zeyi, 2021. "Case study of a novel low rank coal to calcium carbide process based on techno-economic assessment," Energy, Elsevier, vol. 228(C).
    5. Liu, Rongtang & Liu, Ming & Zhao, Yongliang & Ma, Yuegeng & Yan, Junjie, 2021. "Thermodynamic study of a novel lignite poly-generation system driven by solar energy," Energy, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Youwang & Wang, Haiyong & Zhang, Xinghua & Zhang, Qi & Wang, Chenguang & Ma, Longlong, 2022. "Accurate prediction of chemical exergy of technical lignins for exergy-based assessment on sustainable utilization processes," Energy, Elsevier, vol. 243(C).
    2. Navarro, M.V. & López, J.M. & Veses, A. & Callén, M.S. & García, T., 2018. "Kinetic study for the co-pyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model," Energy, Elsevier, vol. 165(PA), pages 731-742.
    3. Ioannis Avagianos & Dimitrios Rakopoulos & Sotirios Karellas & Emmanouil Kakaras, 2020. "Review of Process Modeling of Solid-Fuel Thermal Power Plants for Flexible and Off-Design Operation," Energies, MDPI, vol. 13(24), pages 1-41, December.
    4. Wang, Yanhong & Cao, Lihua & Hu, Pengfei & Li, Bo & Li, Yong, 2019. "Model establishment and performance evaluation of a modified regenerative system for a 660 MW supercritical unit running at the IPT-setting mode," Energy, Elsevier, vol. 179(C), pages 890-915.
    5. Yin, Linfei & Xie, Jiaxing, 2022. "Multi-feature-scale fusion temporal convolution networks for metal temperature forecasting of ultra-supercritical coal-fired power plant reheater tubes," Energy, Elsevier, vol. 238(PA).
    6. Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.
    7. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    9. Andrea Aquino & Pietro Poesio, 2021. "Off-Design Exergy Analysis of Convective Drying Using a Two-Phase Multispecies Model," Energies, MDPI, vol. 14(1), pages 1-36, January.
    10. Chen, Chen & Liu, Ming & Li, Mengjie & Wang, Yu & Wang, Chaoyang & Yan, Junjie, 2024. "Digital twin modeling and operation optimization of the steam turbine system of thermal power plants," Energy, Elsevier, vol. 290(C).
    11. Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).
    12. Yan, Hui & Liu, Ming & Wang, Zhu & Zhang, Kezhen & Chong, Daotong & Yan, Junjie, 2023. "Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions," Energy, Elsevier, vol. 262(PA).
    13. Liu, Ming & Wang, Shan & Yan, Junjie, 2021. "Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm," Energy, Elsevier, vol. 214(C).
    14. Mohammad Qasem & Omar Mohamed & Wejdan Abu Elhaija, 2022. "Parameter Identification and Sliding Pressure Control of a Supercritical Power Plant Using Whale Optimizer," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    15. Qin, Shiyue & Chang, Shiyan, 2017. "Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery," Energy, Elsevier, vol. 141(C), pages 435-450.
    16. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    17. Wang, Congyu & Song, Jiwei, 2023. "Performance assessment of the novel coal-fired combined heat and power plant integrating with flexibility renovations," Energy, Elsevier, vol. 263(PC).
    18. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Qiao, Yongqiang & Yan, Junjie, 2018. "Entropy generation analysis on a heat exchanger with different design and operation factors during transient processes," Energy, Elsevier, vol. 158(C), pages 330-342.
    19. Liu, Ming & Wang, Shan & Zhao, Yongliang & Tang, Haiyu & Yan, Junjie, 2019. "Heat–power decoupling technologies for coal-fired CHP plants: Operation flexibility and thermodynamic performance," Energy, Elsevier, vol. 188(C).
    20. Mollanoori, Mohammad & Dehghan, Ali Akbar, 2024. "Estimating the higher heating value and chemical exergy of solid, liquid, and natural gas fossil fuels," Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:140-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.