IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v158y2018icp330-342.html
   My bibliography  Save this article

Entropy generation analysis on a heat exchanger with different design and operation factors during transient processes

Author

Listed:
  • Wang, Chaoyang
  • Liu, Ming
  • Zhao, Yongliang
  • Qiao, Yongqiang
  • Yan, Junjie

Abstract

Entropy generation analyses on the transient processes of heat exchangers can guide their designs and operations. A dynamic model of a typical recuperative heater is developed based on mass, energy, and momentum conservation equations. Dynamic behaviors of the heater during transient processes are analyzed based on the second law of thermodynamics. The real-time entropy generation rate due to the heat transfer between the work medium and metal surfaces, and the heat conduction in metals are presented and discussed. A cold fluid flow rate with 20% step increase is adopted as the boundary disturbance, and dynamic performances are obtained. Additional entropy is generated in the heater during the transient processes compared with stationary work conditions. Several design and operation factors of the heater are discussed. Calculation results show that the additional total entropy generation diminishes during the transient processes with the increase in the thermal diffusivity of metal. This rule is also suitable for the influence of thermal transfer resistance between the fluid and metal. By contrast, the metal thickness and specific heat capacity of hot work fluid have opposite influences on the total additional entropy generation of the heater during the transient processes.

Suggested Citation

  • Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Qiao, Yongqiang & Yan, Junjie, 2018. "Entropy generation analysis on a heat exchanger with different design and operation factors during transient processes," Energy, Elsevier, vol. 158(C), pages 330-342.
  • Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:330-342
    DOI: 10.1016/j.energy.2018.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218310697
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siefert, Nicholas S. & Litster, Shawn, 2013. "Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants," Applied Energy, Elsevier, vol. 107(C), pages 315-328.
    2. Hou, Hongjuan & Xu, Zhang & Yang, Yongping, 2016. "An evaluation method of solar contribution in a solar aided power generation (SAPG) system based on exergy analysis," Applied Energy, Elsevier, vol. 182(C), pages 1-8.
    3. Arabkoohsar, A. & Andresen, G.B., 2017. "Dynamic energy, exergy and market modeling of a High Temperature Heat and Power Storage System," Energy, Elsevier, vol. 126(C), pages 430-443.
    4. Yang, Yongping & Wang, Ligang & Dong, Changqing & Xu, Gang & Morosuk, Tatiana & Tsatsaronis, George, 2013. "Comprehensive exergy-based evaluation and parametric study of a coal-fired ultra-supercritical power plant," Applied Energy, Elsevier, vol. 112(C), pages 1087-1099.
    5. Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.
    6. Wang, Chaoyang & Zhao, Yongliang & Liu, Ming & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio," Applied Energy, Elsevier, vol. 216(C), pages 212-223.
    7. Wang, Chaoyang & Liu, Ming & Li, Bingxin & Liu, Yiwen & Yan, Junjie, 2017. "Thermodynamic analysis on the transient cycling of coal-fired power plants: Simulation study of a 660 MW supercritical unit," Energy, Elsevier, vol. 122(C), pages 505-527.
    8. Cheng, XueTao, 2013. "Entropy resistance minimization: An alternative method for heat exchanger analyses," Energy, Elsevier, vol. 58(C), pages 672-678.
    9. Heinrichs, Heidi Ursula & Schumann, Diana & Vögele, Stefan & Biß, Klaus Hendrik & Shamon, Hawal & Markewitz, Peter & Többen, Johannes & Gillessen, Bastian & Gotzens, Fabian & Ernst, Anna, 2017. "Integrated assessment of a phase-out of coal-fired power plants in Germany," Energy, Elsevier, vol. 126(C), pages 285-305.
    10. Xue, Xiaodi & Guo, Cong & Du, Xiaoze & Yang, Lijun & Yang, Yongping, 2015. "Thermodynamic analysis and optimization of a two-stage organic Rankine cycle for liquefied natural gas cryogenic exergy recovery," Energy, Elsevier, vol. 83(C), pages 778-787.
    11. Taillon, J. & Blanchard, R.E., 2015. "Exergy efficiency graphs for thermal power plants," Energy, Elsevier, vol. 88(C), pages 57-66.
    12. Goudarzi, N. & Talebi, S., 2015. "Improving performance of two-phase natural circulation loops by reducing of entropy generation," Energy, Elsevier, vol. 93(P1), pages 882-899.
    13. Mehrpooya, Mehdi & Shahsavan, Mohsen & Sharifzadeh, Mohammad Mehdi Moftakhari, 2016. "Modeling, energy and exergy analysis of solar chimney power plant-Tehran climate data case study," Energy, Elsevier, vol. 115(P1), pages 257-273.
    14. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Dynamic modeling and operation optimization for the cold end system of thermal power plants during transient processes," Energy, Elsevier, vol. 145(C), pages 734-746.
    15. Cheng, Xuetao & Liang, Xingang, 2012. "Optimization principles for two-stream heat exchangers and two-stream heat exchanger networks," Energy, Elsevier, vol. 46(1), pages 386-392.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Chong, Daotong & Yan, Junjie, 2020. "Entropy generation distribution characteristics of a supercritical boiler superheater during transient processes," Energy, Elsevier, vol. 201(C).
    2. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Zhang, Zhijiang & Tian, Zhaofei & Ma, Xiaoyu, 2024. "Dynamic exergy analysis of feed water heater in nuclear power plant during start-up process," Energy, Elsevier, vol. 292(C).
    4. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Wang, Zhu & Yan, Junjie, 2018. "Thermodynamics analysis on a heat exchanger unit during the transient processes based on the second law," Energy, Elsevier, vol. 165(PB), pages 622-633.
    5. Zhang, Shunqi & Liu, Ming & Ma, Yuegeng & Liu, Jiping & Yan, Junjie, 2021. "Flexibility assessment of a modified double-reheat Rankine cycle integrating a regenerative turbine during recuperative heater shutdown processes," Energy, Elsevier, vol. 233(C).
    6. Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Liu, Jiping & Yan, Junjie, 2022. "Energy and exergy analyses of a parabolic trough concentrated solar power plant using molten salt during the start-up process," Energy, Elsevier, vol. 254(PC).
    7. Wang, Chaoyang & Qiao, Yongqiang & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2020. "Enhancing peak shaving capability by optimizing reheat-steam temperature control of a double-reheat boiler," Applied Energy, Elsevier, vol. 260(C).
    8. Zhu, Shahong & Zhang, Man & Huang, Yiqun & Wu, Yuxin & Yang, Hairui & Lyu, Junfu & Gao, Xinyu & Wang, Fengjun & Yue, Guangxi, 2019. "Thermodynamic analysis of a 660 MW ultra-supercritical CFB boiler unit," Energy, Elsevier, vol. 173(C), pages 352-363.
    9. Zhang, Kezhen & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Yan, Junjie, 2020. "Entropy generation versus transition time of heat exchanger during transient processes," Energy, Elsevier, vol. 200(C).
    10. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Li, Xin & Chong, Daotong & Yan, Junjie, 2018. "Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes," Applied Energy, Elsevier, vol. 228(C), pages 2375-2386.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Wang, Zhu & Yan, Junjie, 2018. "Thermodynamics analysis on a heat exchanger unit during the transient processes based on the second law," Energy, Elsevier, vol. 165(PB), pages 622-633.
    3. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    4. Zhu, Shahong & Zhang, Man & Huang, Yiqun & Wu, Yuxin & Yang, Hairui & Lyu, Junfu & Gao, Xinyu & Wang, Fengjun & Yue, Guangxi, 2019. "Thermodynamic analysis of a 660 MW ultra-supercritical CFB boiler unit," Energy, Elsevier, vol. 173(C), pages 352-363.
    5. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Li, Xin & Chong, Daotong & Yan, Junjie, 2018. "Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes," Applied Energy, Elsevier, vol. 228(C), pages 2375-2386.
    6. Chen, Chen & Liu, Ming & Li, Mengjie & Wang, Yu & Wang, Chaoyang & Yan, Junjie, 2024. "Digital twin modeling and operation optimization of the steam turbine system of thermal power plants," Energy, Elsevier, vol. 290(C).
    7. Yan, Hui & Liu, Ming & Wang, Zhu & Zhang, Kezhen & Chong, Daotong & Yan, Junjie, 2023. "Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions," Energy, Elsevier, vol. 262(PA).
    8. Zhang, Kezhen & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Yan, Junjie, 2020. "Entropy generation versus transition time of heat exchanger during transient processes," Energy, Elsevier, vol. 200(C).
    9. Wang, Zhu & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Chong, Daotong & Yan, Junjie, 2020. "Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage," Energy, Elsevier, vol. 201(C).
    10. Wang, Chaoyang & Zhao, Yongliang & Liu, Ming & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio," Applied Energy, Elsevier, vol. 216(C), pages 212-223.
    11. Wang, Chaoyang & Qiao, Yongqiang & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2020. "Enhancing peak shaving capability by optimizing reheat-steam temperature control of a double-reheat boiler," Applied Energy, Elsevier, vol. 260(C).
    12. Wang, Yanhong & Cao, Lihua & Hu, Pengfei & Li, Bo & Li, Yong, 2019. "Model establishment and performance evaluation of a modified regenerative system for a 660 MW supercritical unit running at the IPT-setting mode," Energy, Elsevier, vol. 179(C), pages 890-915.
    13. Wang, Yanhong & Cao, Lihua & Li, Xingcan & Wang, Jiaxing & Hu, Pengfei & Li, Bo & Li, Yong, 2020. "A novel thermodynamic method and insight of heat transfer characteristics on economizer for supercritical thermal power plant," Energy, Elsevier, vol. 191(C).
    14. Yin, Linfei & Xie, Jiaxing, 2022. "Multi-feature-scale fusion temporal convolution networks for metal temperature forecasting of ultra-supercritical coal-fired power plant reheater tubes," Energy, Elsevier, vol. 238(PA).
    15. Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.
    16. Mauger, Gedeon & Tauveron, Nicolas & Bentivoglio, Fabrice & Ruby, Alain, 2019. "On the dynamic modeling of Brayton cycle power conversion systems with the CATHARE-3 code," Energy, Elsevier, vol. 168(C), pages 1002-1016.
    17. Alsanousie, Abdurrahman A. & Elsamni, Osama A. & Attia, Abdelhamid E. & Elhelw, Mohamed, 2021. "Transient and troubleshoots management of aged small-scale steam power plants using Aspen Plus Dynamics," Energy, Elsevier, vol. 223(C).
    18. Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).
    19. Liu, Ming & Wang, Shan & Yan, Junjie, 2021. "Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm," Energy, Elsevier, vol. 214(C).
    20. Mohammad Qasem & Omar Mohamed & Wejdan Abu Elhaija, 2022. "Parameter Identification and Sliding Pressure Control of a Supercritical Power Plant Using Whale Optimizer," Sustainability, MDPI, vol. 14(13), pages 1-25, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:158:y:2018:i:c:p:330-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.