IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v81y2015icp41-46.html
   My bibliography  Save this article

Catalytic fast pyrolysis of Geodae-Uksae 1 over zeolites

Author

Listed:
  • Jin, Sung Ho
  • Lee, Hyung Won
  • Ryu, Changkook
  • Jeon, Jong-Ki
  • Park, Young-Kwon

Abstract

Three microporous zeolites with different structures, HZSM-5 (Si/Al2 = 23), Hβ (Si/Al2 = 25) and HY (Si/Al2 = 30), were assessed for the first time for the catalytic fast pyrolysis of Geodae-Uksae-1, a variety of Miscanthus sacchariflorus. In non-catalytic pyrolysis, the temperature for the maximum bio-oil yield was 500 °C, which allowed sufficient conversion of the solid to the vapor phase and suppressed the decomposition reactions in the vapor phase. Using the catalysts, the bio-oil yield decreased with significant changes in composition as a result of active deoxygenation and cracking reactions. This led to the release of CO2, CO and C1–C4 hydrocarbons to the gas phase. In the bio-oil composition, the proportions of phenolics, mono-aromatics and polycyclic aromatic hydrocarbons (PAHs) increased, whereas those for acids, oxygenates and furans decreased. In particular, the use of HZSM-5 led to the largest proportion of mono-aromatics with a minimized coke production, since it had higher acidity, higher shape selectivity, and smaller pore size than the other catalysts. With both Hβ and HY catalysts, the formation of PAHs in the bio-oil and coke on the catalyst surface was significantly high. The proportion of light phenolics, such as alkyl phenolics, also increased with the HY catalyst.

Suggested Citation

  • Jin, Sung Ho & Lee, Hyung Won & Ryu, Changkook & Jeon, Jong-Ki & Park, Young-Kwon, 2015. "Catalytic fast pyrolysis of Geodae-Uksae 1 over zeolites," Energy, Elsevier, vol. 81(C), pages 41-46.
  • Handle: RePEc:eee:energy:v:81:y:2015:i:c:p:41-46
    DOI: 10.1016/j.energy.2014.10.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214012092
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.10.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aysu, Tevfik & Küçük, M. Maşuk, 2014. "Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products," Energy, Elsevier, vol. 64(C), pages 1002-1025.
    2. Bok, Jin Pil & Choi, Hang Seok & Choi, Joon Weon & Choi, Yeon Seok, 2013. "Fast pyrolysis of Miscanthus sinensis in fluidized bed reactors: Characteristics of product yields and biocrude oil quality," Energy, Elsevier, vol. 60(C), pages 44-52.
    3. Choi, Suek Joo & Park, Sung Hoon & Jeon, Jong-Ki & Lee, In Gu & Ryu, Changkook & Suh, Dong Jin & Park, Young-Kwon, 2013. "Catalytic conversion of particle board over microporous catalysts," Renewable Energy, Elsevier, vol. 54(C), pages 105-110.
    4. Williams, Paul T & Nugranad, Nittaya, 2000. "Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks," Energy, Elsevier, vol. 25(6), pages 493-513.
    5. Lee, Hyung Won & Choi, Suek Joo & Park, Sung Hoon & Jeon, Jong-Ki & Jung, Sang-Chul & Joo, Sang Hoon & Park, Young-Kwon, 2014. "Catalytic conversion of Laminaria japonica over microporous zeolites," Energy, Elsevier, vol. 66(C), pages 2-6.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Rongtang & Liu, Ming & Fan, Peipei & Zhao, Yongliang & Yan, Junjie, 2018. "Thermodynamic study on a novel lignite poly-generation system of electricity-gas-tar integrated with pre-drying and pyrolysis," Energy, Elsevier, vol. 165(PB), pages 140-152.
    2. Long, Lin & Zhou, Weixing & Qiu, Yunfeng & Lan, Zhenzhong, 2020. "Coking and gas products behavior of supercritical n-decane over NiO nanoparticle/nanosheets modified HZSM-5," Energy, Elsevier, vol. 192(C).
    3. Myung Lang Yoo & Yong Ho Park & Young-Kwon Park & Sung Hoon Park, 2016. "Catalytic Pyrolysis of Wild Reed over a Zeolite-Based Waste Catalyst," Energies, MDPI, vol. 9(3), pages 1-9, March.
    4. Liang, Jie & Shan, Guangcun & Sun, Yifei, 2021. "Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Choi, Sang Kyu & Choi, Yeon Seok & Han, So Young & Kim, Seock Joon & Rahman, Tawsif & Jeong, Yeon Woo & Van Nguyen, Quynh & Cha, Young Rok, 2019. "Bio-crude oil production from a new genotype of Miscanthus sacchariflorus Geodae-Uksae 1," Renewable Energy, Elsevier, vol. 144(C), pages 153-158.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Hyung Won & Jun, Bo Ram & Kim, Hannah & Kim, Do Heui & Jeon, Jong-Ki & Park, Sung Hoon & Ko, Chang Hyun & Kim, Tae-Wan & Park, Young-Kwon, 2015. "Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites," Energy, Elsevier, vol. 81(C), pages 33-40.
    2. Liang, Jie & Shan, Guangcun & Sun, Yifei, 2021. "Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Lizhen Qin & Donghoon Shin, 2023. "Effects of UV Light Treatment on Functional Group and Its Adsorption Capacity of Biochar," Energies, MDPI, vol. 16(14), pages 1-14, July.
    4. Lee, Hyung Won & Choi, Suek Joo & Jeon, Jong-Ki & Park, Sung Hoon & Jung, Sang-Chul & Park, Young-Kwon, 2015. "Catalytic conversion of waste particle board and polypropylene over H-beta and HY zeolites," Renewable Energy, Elsevier, vol. 79(C), pages 9-13.
    5. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    6. Ioannidou, O. & Zabaniotou, A. & Antonakou, E.V. & Papazisi, K.M. & Lappas, A.A. & Athanassiou, C., 2009. "Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 750-762, May.
    7. Pütün, Ayşe E. & Apaydın, Esin & Pütün, Ersan, 2004. "Rice straw as a bio-oil source via pyrolysis and steam pyrolysis," Energy, Elsevier, vol. 29(12), pages 2171-2180.
    8. Myung Lang Yoo & Yong Ho Park & Young-Kwon Park & Sung Hoon Park, 2016. "Catalytic Pyrolysis of Wild Reed over a Zeolite-Based Waste Catalyst," Energies, MDPI, vol. 9(3), pages 1-9, March.
    9. Fan, Yongsheng & Zhao, Weidong & Shao, Shanshan & Cai, Yixi & Chen, Yuwei & Jin, Lizhu, 2018. "Promotion of the vapors from biomass vacuum pyrolysis for biofuels under Non-thermal Plasma Synergistic Catalysis (NPSC) system," Energy, Elsevier, vol. 142(C), pages 462-472.
    10. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    11. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    12. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    13. Choi, Sang Kyu & Choi, Yeon Seok & Han, So Young & Kim, Seock Joon & Rahman, Tawsif & Jeong, Yeon Woo & Van Nguyen, Quynh & Cha, Young Rok, 2019. "Bio-crude oil production from a new genotype of Miscanthus sacchariflorus Geodae-Uksae 1," Renewable Energy, Elsevier, vol. 144(C), pages 153-158.
    14. Oh, Shinyoung & Kim, Ung-Jin & Choi, In-Gyu & Choi, Joon Weon, 2016. "Solvent effects on improvement of fuel properties during hydrodeoxygenation process of bio-oil in the presence of Pt/C," Energy, Elsevier, vol. 113(C), pages 116-123.
    15. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    16. Alina Kowalczyk-Juśko & Andrzej Mazur & Patrycja Pochwatka & Damian Janczak & Jacek Dach, 2022. "Evaluation of the Effects of Using the Giant Miscanthus ( Miscanthus × Giganteus ) Biomass in Various Energy Conversion Processes," Energies, MDPI, vol. 15(10), pages 1-16, May.
    17. Prasertcharoensuk, Phuet & Bull, Steve J. & Phan, Anh N., 2019. "Gasification of waste biomass for hydrogen production: Effects of pyrolysis parameters," Renewable Energy, Elsevier, vol. 143(C), pages 112-120.
    18. Trubetskaya, Anna & Grams, Jacek & Leahy, James J. & Johnson, Robert & Gallagher, Paul & Monaghan, Rory F.D. & Kwapinska, Marzena, 2020. "The effect of particle size, temperature and residence time on the yields and reactivity of olive stones from torrefaction," Renewable Energy, Elsevier, vol. 160(C), pages 998-1011.
    19. Wijayanta, Agung Tri & Aziz, Muhammad, 2019. "Ammonia production from algae via integrated hydrothermal gasification, chemical looping, N2 production, and NH3 synthesis," Energy, Elsevier, vol. 174(C), pages 331-338.
    20. Sang Kyu Choi & Yeon Seok Choi & Yeon Woo Jeong & So Young Han & Quynh Van Nguyen, 2020. "Simulation of the Fast Pyrolysis of Coffee Ground in a Tilted-Slide Reactor," Energies, MDPI, vol. 13(24), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:81:y:2015:i:c:p:41-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.