Study on the characteristics of microwave pyrolysis of high-ash sludge, including the products, yields, and energy recovery efficiencies
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.12.085
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Su Shiung Lam & Howard A. Chase, 2012. "A Review on Waste to Energy Processes Using Microwave Pyrolysis," Energies, MDPI, vol. 5(10), pages 1-24, October.
- Huang, Yu-Fong & Chiueh, Pei-Te & Kuan, Wen-Hui & Lo, Shang-Lien, 2016. "Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics," Energy, Elsevier, vol. 100(C), pages 137-144.
- Yang, Y. & Brammer, J.G. & Samanya, J. & Hossain, A.K. & Hornung, A., 2013. "Investigation into the performance and emissions of a stationary diesel engine fuelled by sewage sludge intermediate pyrolysis oil and biodiesel blends," Energy, Elsevier, vol. 62(C), pages 269-276.
- Yu, Yong Ho & Kim, Sang Done & Lee, Jong Min & Lee, Keun Hoo, 2002. "Kinetic studies of dehydration, pyrolysis and combustion of paper sludge," Energy, Elsevier, vol. 27(5), pages 457-469.
- Gil-Lalaguna, N. & Sánchez, J.L. & Murillo, M.B. & Atienza-Martínez, M. & Gea, G., 2014. "Energetic assessment of air-steam gasification of sewage sludge and of the integration of sewage sludge pyrolysis and air-steam gasification of char," Energy, Elsevier, vol. 76(C), pages 652-662.
- Folgueras, M.B. & Alonso, M. & Díaz, R.M., 2013. "Influence of sewage sludge treatment on pyrolysis and combustion of dry sludge," Energy, Elsevier, vol. 55(C), pages 426-435.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Luo, Juan & Sun, Shichang & Chen, Xing & Lin, Junhao & Ma, Rui & Zhang, Rui & Fang, Lin, 2021. "In-depth exploration of the energy utilization and pyrolysis mechanism of advanced continuous microwave pyrolysis," Applied Energy, Elsevier, vol. 292(C).
- Liu, Rongtang & Liu, Ming & Fan, Peipei & Zhao, Yongliang & Yan, Junjie, 2018. "Thermodynamic study on a novel lignite poly-generation system of electricity-gas-tar integrated with pre-drying and pyrolysis," Energy, Elsevier, vol. 165(PB), pages 140-152.
- Lin, Kuo-Hsiung & Lai, Nina & Zeng, Jun-Yan & Chiang, Hung-Lung, 2020. "Microwave-pyrolysis treatment of biosludge from a chemical industrial wastewater treatment plant for exploring product characteristics and potential energy recovery," Energy, Elsevier, vol. 199(C).
- Sun, Jiaman & Luo, Juan & Lin, Junhao & Ma, Rui & Sun, Shichang & Fang, Lin & Li, Haowen, 2022. "Study of co-pyrolysis endpoint and product conversion of plastic and biomass using microwave thermogravimetric technology," Energy, Elsevier, vol. 247(C).
- Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
- Awasthi, Mukesh Kumar & Singh, Ekta & Binod, Parameswaran & Sindhu, Raveendran & Sarsaiya, Surendra & Kumar, Aman & Chen, Hongyu & Duan, Yumin & Pandey, Ashok & Kumar, Sunil & Taherzadeh, Mohammad J. , 2022. "Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Jumoke Oladejo & Kaiqi Shi & Xiang Luo & Gang Yang & Tao Wu, 2018. "A Review of Sludge-to-Energy Recovery Methods," Energies, MDPI, vol. 12(1), pages 1-38, December.
- Tang, Siqi & Zheng, Chunmiao & Yan, Feng & Shao, Ningning & Tang, Yuanyuan & Zhang, Zuotai, 2018. "Product characteristics and kinetics of sewage sludge pyrolysis driven by alkaline earth metals," Energy, Elsevier, vol. 153(C), pages 921-932.
- Gu, Suqian & Xu, Zhiqiang & Ren, Yangguang & Tu, Yanan & Sun, Meijie & Liu, Xiangyang, 2021. "An approach for upgrading lignite to improve slurryability: Blending with direct coal liquefaction residue under microwave-assisted pyrolysis," Energy, Elsevier, vol. 222(C).
- Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiao, Zhihua & Yuan, Xingzhong & Jiang, Longbo & Chen, Xiaohong & Li, Hui & Zeng, Guangming & Leng, Lijian & Wang, Hou & Huang, Huajun, 2015. "Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust," Energy, Elsevier, vol. 91(C), pages 441-450.
- Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
- Huang, Yu-Fong & Kuan, Wen-Hui & Chang, Chun-Yuan, 2018. "Effects of particle size, pretreatment, and catalysis on microwave pyrolysis of corn stover," Energy, Elsevier, vol. 143(C), pages 696-703.
- Liu, Yang & Ran, Chunmei & Siddiqui, Azka R. & Mao, Xiao & Kang, Qinhao & Fu, Jie & Deng, Zeyu & Song, Yongmeng & Jiang, Zhihui & Zhang, Tianhao & Ao, Wenya & Dai, Jianjun, 2018. "Pyrolysis of textile dyeing sludge in fluidized bed: Characterization and analysis of pyrolysis products," Energy, Elsevier, vol. 165(PA), pages 720-730.
- Ali Mubarak Al-Qahtani, 2023. "A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation," Energies, MDPI, vol. 16(19), pages 1-16, September.
- Santhoshkumar, A. & Ramanathan, Anand, 2020. "Recycling of waste engine oil through pyrolysis process for the production of diesel like fuel and its uses in diesel engine," Energy, Elsevier, vol. 197(C).
- Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
- Fiyinfoluwa Joan Medaiyese & Hamid Reza Nasriani & Leila Khajenoori & Khalid Khan & Ali Badiei, 2024. "From Waste to Energy: Enhancing Fuel and Hydrogen Production through Pyrolysis and In-Line Reforming of Plastic Wastes," Sustainability, MDPI, vol. 16(12), pages 1-31, June.
- Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
- Wan Adibah Wan Mahari & Nur Fatihah Zainuddin & Wan Mohd Norsani Wan Nik & Cheng Tung Chong & Su Shiung Lam, 2016. "Pyrolysis Recovery of Waste Shipping Oil Using Microwave Heating," Energies, MDPI, vol. 9(10), pages 1-9, September.
- Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
- Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
- Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
- Subhash Chandra & Isha Medha & Ashwani Kumar Tiwari, 2023. "The Role of Modified Biochar for the Remediation of Coal Mining-Impacted Contaminated Soil: A Review," Sustainability, MDPI, vol. 15(5), pages 1-27, February.
- Song, Zhanlong & Yang, Yaqing & Sun, Jing & Zhao, Xiqiang & Wang, Wenlong & Mao, Yanpeng & Ma, Chunyuan, 2017. "Effect of power level on the microwave pyrolysis of tire powder," Energy, Elsevier, vol. 127(C), pages 571-580.
- Yanfen, Liao & Xiaoqian, Ma, 2010. "Thermogravimetric analysis of the co-combustion of coal and paper mill sludge," Applied Energy, Elsevier, vol. 87(11), pages 3526-3532, November.
- Tian, Hong & Chen, Lei & Huang, Zhangjun & Cheng, Shan & Yang, Yang, 2022. "Increasing the bio-aromatics yield in the biomass pyrolysis oils by the integration of torrefaction deoxygenation pretreatment and catalytic fast pyrolysis with a dual catalyst system," Renewable Energy, Elsevier, vol. 187(C), pages 561-571.
- Zhang, Lianjie & Tan, Yongdong & Cai, Dongqiang & Sun, Jifu & Zhang, Yue & Li, Longzhi & Zhang, Qiang & Zou, Guifu & Song, Zhanlong & Bai, Yonghui, 2022. "Enhanced pyrolysis of woody biomass under interaction of microwave and needle-shape metal and its production properties," Energy, Elsevier, vol. 249(C).
- Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
More about this item
Keywords
High-ash sludge; Microwave pyrolysis; Yield; Energy recovery efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:144:y:2018:i:c:p:515-525. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.