Energy and exergy analyses of sewage sludge thermochemical treatment
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.12.007
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fonts, Isabel & Gea, Gloria & Azuara, Manuel & Ábrego, Javier & Arauzo, Jesús, 2012. "Sewage sludge pyrolysis for liquid production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2781-2805.
- Bilgen, Selçuk & Keleş, Sedat & Kaygusuz, Kamil, 2012. "Calculation of higher and lower heating values and chemical exergy values of liquid products obtained from pyrolysis of hazelnut cupulae," Energy, Elsevier, vol. 41(1), pages 380-385.
- Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2006. "More efficient biomass gasification via torrefaction," Energy, Elsevier, vol. 31(15), pages 3458-3470.
- Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
- Song, Guohui & Xiao, Jun & Zhao, Hao & Shen, Laihong, 2012. "A unified correlation for estimating specific chemical exergy of solid and liquid fuels," Energy, Elsevier, vol. 40(1), pages 164-173.
- Peters, Jens F. & Petrakopoulou, Fontina & Dufour, Javier, 2015. "Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading," Energy, Elsevier, vol. 79(C), pages 325-336.
- Granados, D.A. & Velásquez, H.I. & Chejne, F., 2014. "Energetic and exergetic evaluation of residual biomass in a torrefaction process," Energy, Elsevier, vol. 74(C), pages 181-189.
- Gil-Lalaguna, N. & Sánchez, J.L. & Murillo, M.B. & Atienza-Martínez, M. & Gea, G., 2014. "Energetic assessment of air-steam gasification of sewage sludge and of the integration of sewage sludge pyrolysis and air-steam gasification of char," Energy, Elsevier, vol. 76(C), pages 652-662.
- Van de Velden, Manon & Baeyens, Jan & Brems, Anke & Janssens, Bart & Dewil, Raf, 2010. "Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction," Renewable Energy, Elsevier, vol. 35(1), pages 232-242.
- Saidur, R. & BoroumandJazi, G. & Mekhilef, S. & Mohammed, H.A., 2012. "A review on exergy analysis of biomass based fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1217-1222.
- Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
- Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Rongtang & Liu, Ming & Fan, Peipei & Zhao, Yongliang & Yan, Junjie, 2018. "Thermodynamic study on a novel lignite poly-generation system of electricity-gas-tar integrated with pre-drying and pyrolysis," Energy, Elsevier, vol. 165(PB), pages 140-152.
- Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
- Thoharudin, & Hsiau, Shu-San & Chen, Yi-Shun & Yang, Shouyin, 2023. "Design optimization of fluidized bed pyrolysis for energy and exergy analysis using a simplified comprehensive multistep kinetic model," Energy, Elsevier, vol. 276(C).
- Ábrego, Javier & Plaza, Daniel & Luño, Francisco & Atienza-Martínez, María & Gea, Gloria, 2018. "Pyrolysis of cashew nutshells: Characterization of products and energy balance," Energy, Elsevier, vol. 158(C), pages 72-80.
- Baghel, Paramjeet & Sakhiya, Anil Kumar & Kaushal, Priyanka, 2022. "Influence of temperature on slow pyrolysis of Prosopis Juliflora: An experimental and thermodynamic approach," Renewable Energy, Elsevier, vol. 185(C), pages 538-551.
- Yang, Qingchun & Zhang, Dawei & Zhou, Huairong & Zhang, Chenwei, 2018. "Process simulation, analysis and optimization of a coal to ethylene glycol process," Energy, Elsevier, vol. 155(C), pages 521-534.
- Ábrego, J. & Atienza-Martínez, M. & Plou, F. & Arauzo, J., 2019. "Heat requirement for fixed bed pyrolysis of beechwood chips," Energy, Elsevier, vol. 178(C), pages 145-157.
- Greco, Gianluca & Di Stasi, Christian & Rego, Filipe & González, Belén & Manyà, Joan J., 2020. "Effects of slow-pyrolysis conditions on the products yields and properties and on exergy efficiency: A comprehensive assessment for wheat straw," Applied Energy, Elsevier, vol. 279(C).
- Wilhelm Jan Tic & Joanna Guziałowska-Tic & Halina Pawlak-Kruczek & Eugeniusz Woźnikowski & Adam Zadorożny & Łukasz Niedźwiecki & Mateusz Wnukowski & Krystian Krochmalny & Michał Czerep & Michał Ostryc, 2018. "Novel Concept of an Installation for Sustainable Thermal Utilization of Sewage Sludge," Energies, MDPI, vol. 11(4), pages 1-17, March.
- Chaudhary, Amita & Lakhani, Jay & Dalsaniya, Priyank & Chaudhary, Prins & Trada, Akshit & Shah, Niraj K. & Upadhyay, Darshit S., 2023. "Slow pyrolysis of low-density Poly-Ethylene (LDPE): A batch experiment and thermodynamic analysis," Energy, Elsevier, vol. 263(PB).
- Eldredge, T.V., 2021. "The feasibility of solar assisted pyrolysis of sewer sludge and its potential for CO2 emissions reductions," Energy, Elsevier, vol. 226(C).
- Tang, Siqi & Zheng, Chunmiao & Yan, Feng & Shao, Ningning & Tang, Yuanyuan & Zhang, Zuotai, 2018. "Product characteristics and kinetics of sewage sludge pyrolysis driven by alkaline earth metals," Energy, Elsevier, vol. 153(C), pages 921-932.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huang, Y.W. & Chen, M.Q. & Li, Y. & Guo, J., 2016. "Modeling of chemical exergy of agricultural biomass using improved general regression neural network," Energy, Elsevier, vol. 114(C), pages 1164-1175.
- Qian, Hongliang & Chen, Wei & Zhu, Weiwei & Liu, Chang & Lu, Xiaohua & Guo, Xiaojing & Huang, Dechun & Liang, Xiaodong & Kontogeorgis, Georgios M., 2019. "Simulation and evaluation of utilization pathways of biomasses based on thermodynamic data prediction," Energy, Elsevier, vol. 173(C), pages 610-625.
- Chen, Wei-Hsin & Kuo, Po-Chih & Liu, Shih-Hsien & Wu, Wei, 2014. "Thermal characterization of oil palm fiber and eucalyptus in torrefaction," Energy, Elsevier, vol. 71(C), pages 40-48.
- Brojolall, Neeha & Surroop, Dinesh, 2022. "Improving fuel characteristics through torrefaction," Energy, Elsevier, vol. 246(C).
- Qian, Hongliang & Zhu, Weiwei & Fan, Sudong & Liu, Chang & Lu, Xiaohua & Wang, Zhixiang & Huang, Dechun & Chen, Wei, 2017. "Prediction models for chemical exergy of biomass on dry basis from ultimate analysis using available electron concepts," Energy, Elsevier, vol. 131(C), pages 251-258.
- Chai, Li & Saffron, Christopher M., 2016. "Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost," Applied Energy, Elsevier, vol. 163(C), pages 387-395.
- Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
- Rousset, P. & Fernandes, K. & Vale, A. & Macedo, L. & Benoist, A., 2013. "Change in particle size distribution of Torrefied biomass during cold fluidization," Energy, Elsevier, vol. 51(C), pages 71-77.
- Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
- Luis Puigjaner & Mar Pérez-Fortes & José M. Laínez-Aguirre, 2015. "Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach," Energies, MDPI, vol. 8(6), pages 1-48, June.
- Huang, Yu-Fong & Cheng, Pei-Hsin & Chiueh, Pei-Te & Lo, Shang-Lien, 2017. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency," Applied Energy, Elsevier, vol. 204(C), pages 1018-1025.
- Rudolfsson, Magnus & Stelte, Wolfgang & Lestander, Torbjörn A., 2015. "Process optimization of combined biomass torrefaction and pelletization for fuel pellet production – A parametric study," Applied Energy, Elsevier, vol. 140(C), pages 378-384.
- Vincent, Shubha Shalini & Mahinpey, Nader & Aqsha, Aqsha, 2014. "Mass transfer studies during CO2 gasification of torrefied and pyrolyzed chars," Energy, Elsevier, vol. 67(C), pages 319-327.
- Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Zuo, Zongliang & Feng, Yan & Li, Xiaoteng & Luo, Siyi & Ma, Jinshuang & Sun, Huiping & Bi, Xuejun & Yu, Qingbo & Zhou, Enze & Zhang, Jingkui & Guo, Jianxiang & Lin, Huan, 2021. "Thermal-chemical conversion of sewage sludge based on waste heat cascade recovery of copper slag: Mass and energy analysis," Energy, Elsevier, vol. 235(C).
- Sabil, Khalik M. & Aziz, Muafah A. & Lal, Bhajan & Uemura, Yoshimitsu, 2013. "Synthetic indicator on the severity of torrefaction of oil palm biomass residues through mass loss measurement," Applied Energy, Elsevier, vol. 111(C), pages 821-826.
- Grigiante, M. & Brighenti, M. & Antolini, D., 2016. "A generalized activation energy equation for torrefaction of hardwood biomasses based on isoconversional methods," Renewable Energy, Elsevier, vol. 99(C), pages 1318-1326.
- Mollanoori, Mohammad & Dehghan, Ali Akbar, 2024. "Estimating the higher heating value and chemical exergy of solid, liquid, and natural gas fossil fuels," Energy, Elsevier, vol. 302(C).
- Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
- Saidur, R. & BoroumandJazi, G. & Mekhilef, S. & Mohammed, H.A., 2012. "A review on exergy analysis of biomass based fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1217-1222.
More about this item
Keywords
Torrefaction; Pyrolysis; Catalytic post-treatment; Sewage sludge; Energy balance; Exergy balance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:144:y:2018:i:c:p:723-735. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.