IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v254y2019ics0306261919312280.html
   My bibliography  Save this article

Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach

Author

Listed:
  • Zhao, Haitao
  • Jiang, Peng
  • Chen, Zhe
  • Ezeh, Collins I.
  • Hong, Yuanda
  • Guo, Yishan
  • Zheng, Chenghang
  • Džapo, Hrvoje
  • Gao, Xiang
  • Wu, Tao

Abstract

The fluctuating energy requirement from time-varying demand changes require flexible power system to respond to the dynamic load balance. In certain scenarios, flexible power systems are necessary to provide high system efficiencies and increase the long-term economic benefits. Therefore, it is important to identify the relationship between energy requirement of a city and/or industrial zone with the dynamics of a flexible power system. In this paper, we evaluate the possible benefits of adopting the energy-cyber-physical-systems (e-CPSs) concept in realization of a flexible closed-loop control power system in case of coal-sewage sludge co-combustion. The case study performance analysis of flexibility, efficiency and economics (FEE) for a 356 MW coal-fired power plant was conducted by means of simulation in Aspen PLUS software. The analysis was based on a specific multifarious model of a dynamic power system with two energy sources and four energy products. The results confirmed that substantial advantages including a more flexible, efficient and economically viable system can be achieved by using e-CPSs based solution in different case scenarios. Moreover, following the analyzed data from the proposed case scenarios, a forecasting model for optimization of the power plant parameters based on the use of artificial neural network (ANN) was established. The results showed that ANN-based approach for predictive model is capable of modelling the complex process within an acceptable prediction accuracy. The study demonstrates that the proposed flexible closed-loop control power system based on e-CPSs concept is able to achieve higher efficiency and economic benefits compared to the traditional approaches.

Suggested Citation

  • Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).
  • Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919312280
    DOI: 10.1016/j.apenergy.2019.113554
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919312280
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Cheng & Xu, Gang & Zhao, Shifei & Zhou, Luyao & Yang, Yongping & Zhang, Dongke, 2015. "An improved configuration of lignite pre-drying using a supplementary steam cycle in a lignite fired supercritical power plant," Applied Energy, Elsevier, vol. 160(C), pages 882-891.
    2. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    3. Wang, Fu & Zhao, Jun & Zhang, Houcheng & Miao, He & Zhao, Jiapei & Wang, Jiatang & Yuan, Jinliang & Yan, Jinyue, 2018. "Efficiency evaluation of a coal-fired power plant integrated with chilled ammonia process using an absorption refrigerator," Applied Energy, Elsevier, vol. 230(C), pages 267-276.
    4. Jana, Kuntal & De, Sudipta, 2015. "Sustainable polygeneration design and assessment through combined thermodynamic, economic and environmental analysis," Energy, Elsevier, vol. 91(C), pages 540-555.
    5. Oh, Se-Young & Yun, Seokwon & Kim, Jin-Kuk, 2018. "Process integration and design for maximizing energy efficiency of a coal-fired power plant integrated with amine-based CO2 capture process," Applied Energy, Elsevier, vol. 216(C), pages 311-322.
    6. Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.
    7. Pan, Shu-Yuan & Lorente Lafuente, Ana Maria & Chiang, Pen-Chi, 2016. "Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization," Applied Energy, Elsevier, vol. 170(C), pages 269-277.
    8. Shahbaz, Muhammad & Taqvi, Syed A. & Minh Loy, Adrian Chun & Inayat, Abrar & Uddin, Fahim & Bokhari, Awais & Naqvi, Salman Raza, 2019. "Artificial neural network approach for the steam gasification of palm oil waste using bottom ash and CaO," Renewable Energy, Elsevier, vol. 132(C), pages 243-254.
    9. Wang, Chaoyang & Zhao, Yongliang & Liu, Ming & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio," Applied Energy, Elsevier, vol. 216(C), pages 212-223.
    10. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Li, Xin & Chong, Daotong & Yan, Junjie, 2018. "Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes," Applied Energy, Elsevier, vol. 228(C), pages 2375-2386.
    11. Xiang, Dong & Qian, Yu & Man, Yi & Yang, Siyu, 2014. "Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process," Applied Energy, Elsevier, vol. 113(C), pages 639-647.
    12. Shang, Nan & Lin, You & Ding, Yi & Ye, Chengjin & Yan, Jinyue, 2019. "Nodal market power assessment of flexible demand resources," Applied Energy, Elsevier, vol. 235(C), pages 564-577.
    13. Zhao, Haitao & Mu, Xueliang & Yang, Gang & George, Mike & Cao, Pengfei & Fanady, Billy & Rong, Siyu & Gao, Xiang & Wu, Tao, 2017. "Graphene-like MoS2 containing adsorbents for Hg0 capture at coal-fired power plants," Applied Energy, Elsevier, vol. 207(C), pages 254-264.
    14. Richter, Marcel & Oeljeklaus, Gerd & Görner, Klaus, 2019. "Improving the load flexibility of coal-fired power plants by the integration of a thermal energy storage," Applied Energy, Elsevier, vol. 236(C), pages 607-621.
    15. Ahmadi, Gholam Reza & Toghraie, Davood, 2016. "Energy and exergy analysis of Montazeri Steam Power Plant in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 454-463.
    16. Tola, Vittorio & Pettinau, Alberto, 2014. "Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies," Applied Energy, Elsevier, vol. 113(C), pages 1461-1474.
    17. Jana, Kuntal & De, Sudipta, 2015. "Polygeneration using agricultural waste: Thermodynamic and economic feasibility study," Renewable Energy, Elsevier, vol. 74(C), pages 648-660.
    18. Lai, Kexing & Illindala, Mahesh & Subramaniam, Karthikeyan, 2019. "A tri-level optimization model to mitigate coordinated attacks on electric power systems in a cyber-physical environment," Applied Energy, Elsevier, vol. 235(C), pages 204-218.
    19. Fan, Junming & Hong, Hui & Zhu, Lin & Jiang, Qiongqiong & Jin, Hongguang, 2017. "Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO2 capture for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 195(C), pages 861-876.
    20. Andersson, Jim & Lundgren, Joakim, 2014. "Techno-economic analysis of ammonia production via integrated biomass gasification," Applied Energy, Elsevier, vol. 130(C), pages 484-490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zhidong & Hou, Yichen & Liu, Mingyu & Zhang, Guoqiang & Zhang, Kai & Zhang, Dongke & Yang, Lijun & Kong, Yanqiang & Du, Xiaoze, 2022. "Thermodynamic and economic analyses of sewage sludge resource utilization systems integrating Drying, Incineration, and power generation processes," Applied Energy, Elsevier, vol. 327(C).
    2. Zhang, Shunqi & Liu, Ming & Ma, Yuegeng & Liu, Jiping & Yan, Junjie, 2021. "Flexibility assessment of a modified double-reheat Rankine cycle integrating a regenerative turbine during recuperative heater shutdown processes," Energy, Elsevier, vol. 233(C).
    3. Ekata Kaushik & Vivek Prakash & Om Prakash Mahela & Baseem Khan & Almoataz Y. Abdelaziz & Junhee Hong & Zong Woo Geem, 2022. "Optimal Placement of Renewable Energy Generators Using Grid-Oriented Genetic Algorithm for Loss Reduction and Flexibility Improvement," Energies, MDPI, vol. 15(5), pages 1-20, March.
    4. Maciej Dzikuć & Piotr Kuryło & Rafał Dudziak & Szymon Szufa & Maria Dzikuć & Karolina Godzisz, 2020. "Selected Aspects of Combustion Optimization of Coal in Power Plants," Energies, MDPI, vol. 13(9), pages 1-15, May.
    5. Wang, Zhu & Liu, Ming & Yan, Junjie, 2021. "Flexibility and efficiency co-enhancement of thermal power plant by control strategy improvement considering time varying and detailed boiler heat storage characteristics," Energy, Elsevier, vol. 232(C).
    6. Sun, Wenqiang & Wang, Qiang & Zhou, Yue & Wu, Jianzhong, 2020. "Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives," Applied Energy, Elsevier, vol. 268(C).
    7. Du, Dajun & Zhu, Minggao & Wu, Dakui & Li, Xue & Fei, Minrui & Hu, Yukun & Li, Kang, 2024. "Distributed security state estimation-based carbon emissions and economic cost analysis for cyber–physical power systems under hybrid attacks," Applied Energy, Elsevier, vol. 353(PA).
    8. Nowak, Grzegorz & Rusin, Andrzej & Łukowicz, Henryk & Tomala, Martyna, 2020. "Improving the power unit operation flexibility by the turbine start-up optimization," Energy, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shunqi & Liu, Ming & Ma, Yuegeng & Liu, Jiping & Yan, Junjie, 2021. "Flexibility assessment of a modified double-reheat Rankine cycle integrating a regenerative turbine during recuperative heater shutdown processes," Energy, Elsevier, vol. 233(C).
    2. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Yin, Linfei & Xie, Jiaxing, 2022. "Multi-feature-scale fusion temporal convolution networks for metal temperature forecasting of ultra-supercritical coal-fired power plant reheater tubes," Energy, Elsevier, vol. 238(PA).
    4. Yan, Hui & Liu, Ming & Wang, Zhu & Zhang, Kezhen & Chong, Daotong & Yan, Junjie, 2023. "Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions," Energy, Elsevier, vol. 262(PA).
    5. Wang, Chaoyang & Qiao, Yongqiang & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2020. "Enhancing peak shaving capability by optimizing reheat-steam temperature control of a double-reheat boiler," Applied Energy, Elsevier, vol. 260(C).
    6. Chen, Chen & Liu, Ming & Li, Mengjie & Wang, Yu & Wang, Chaoyang & Yan, Junjie, 2024. "Digital twin modeling and operation optimization of the steam turbine system of thermal power plants," Energy, Elsevier, vol. 290(C).
    7. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2020. "Estimating Long-Term Global Supply Costs for Low-Carbon Hydrogen," EWI Working Papers 2020-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
    8. Wang, Zhu & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Chong, Daotong & Yan, Junjie, 2020. "Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage," Energy, Elsevier, vol. 201(C).
    9. Liu, Zefeng & Wang, Chaoyang & Fan, Jianlin & Liu, Ming & Xing, Yong & Yan, Junjie, 2024. "Enhancing the flexibility and stability of coal-fired power plants by optimizing control schemes of throttling high-pressure extraction steam," Energy, Elsevier, vol. 288(C).
    10. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    11. Liu, Ming & Wang, Shan & Zhao, Yongliang & Tang, Haiyu & Yan, Junjie, 2019. "Heat–power decoupling technologies for coal-fired CHP plants: Operation flexibility and thermodynamic performance," Energy, Elsevier, vol. 188(C).
    12. Xu, Cheng & Zhang, Qiang & Yang, Zhiping & Li, Xiaosa & Xu, Gang & Yang, Yongping, 2018. "An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle," Applied Energy, Elsevier, vol. 231(C), pages 1319-1329.
    13. Yang, Tingting & Liu, Ziyuan & Zeng, Deliang & Zhu, Yansong, 2023. "Simulation and evaluation of flexible enhancement of thermal power unit coupled with flywheel energy storage array," Energy, Elsevier, vol. 281(C).
    14. Liu, Ming & Ma, Guofeng & Wang, Shan & Wang, Yu & Yan, Junjie, 2021. "Thermo-economic comparison of heat–power decoupling technologies for combined heat and power plants when participating in a power-balancing service in an energy hub," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Wang, Zhu & Liu, Ming & Yan, Junjie, 2021. "Flexibility and efficiency co-enhancement of thermal power plant by control strategy improvement considering time varying and detailed boiler heat storage characteristics," Energy, Elsevier, vol. 232(C).
    16. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Wang, Zhu & Yan, Junjie, 2018. "Thermodynamics analysis on a heat exchanger unit during the transient processes based on the second law," Energy, Elsevier, vol. 165(PB), pages 622-633.
    17. Jiang, Peng & Parvez, Ashak Mahmud & Meng, Yang & Xu, Meng-xia & Shui, Tian-chi & Sun, Cheng-gong & Wu, Tao, 2019. "Exergetic, economic and carbon emission studies of bio-olefin production via indirect steam gasification process," Energy, Elsevier, vol. 187(C).
    18. Liu, Kairui & Wang, Chao & Wang, Limin & Liu, Bin & Ye, Maojing & Guo, Yalong & Che, Defu, 2023. "Dynamic performance analysis and control strategy optimization for supercritical coal-fired boiler: A dynamic simulation," Energy, Elsevier, vol. 282(C).
    19. Çam, Eren, 2020. "Optimal Dispatch of a Coal-Fired Power Plant with Integrated Thermal Energy Storage," EWI Working Papers 2020-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
    20. Cao, Lihua & Wang, Zhanzhou & Pan, Tongyang & Dong, Enfu & Hu, Pengfei & Liu, Miao & Ma, Tingshan, 2021. "Analysis on wind power accommodation ability and coal consumption of heat–power decoupling technologies for CHP units," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919312280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.