IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v214y2021ics0360544220321290.html
   My bibliography  Save this article

Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm

Author

Listed:
  • Liu, Ming
  • Wang, Shan
  • Yan, Junjie

Abstract

The accommodation of high-penetration renewable power poses a considerable challenge to power grids. Coal-fired combined heat and power (CHP) stations are forced to enhance their operational flexibility by applying heat-power decoupling technologies. Power-to-heat devices, including electric boilers and heat pumps, are capable to enhance the operational flexibility of coal-fired CHP stations. The problem regarding the operation scheduling of a CHP station with multiple CHP units and power-to-heat devices is addressed in this study. Operation optimization models integrated with detail CHP unit models are developed, and the particle swarm optimization algorithm is utilized as the optimization algorithm. Then, a case study are carried out. Results show that the unequal distribution of heating and power loads among coal-fired CHP units can decrease the total irreversibility caused by heating steam pressure regulation. The operation scheduling method provided in this study can decrease the total coal consumption by 14.14 and 14.70 t/day for the CHP station integrated with an electric boiler and a heat pump, respectively. As a result, 1204.7 and 1252.44 ton CO2, and an additional ∼182 and ∼190 kUSD/year can be saved for the reference CHP station integrated with an electric boiler and a heat pump, respectively.

Suggested Citation

  • Liu, Ming & Wang, Shan & Yan, Junjie, 2021. "Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm," Energy, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220321290
    DOI: 10.1016/j.energy.2020.119022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220321290
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Popovski, Eftim & Aydemir, Ali & Fleiter, Tobias & Bellstädt, Daniel & Büchele, Richard & Steinbach, Jan, 2019. "The role and costs of large-scale heat pumps in decarbonising existing district heating networks – A case study for the city of Herten in Germany," Energy, Elsevier, vol. 180(C), pages 918-933.
    2. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    3. Mohamed, Ayman & Hamdy, Mohamed & Hasan, Ala & Sirén, Kai, 2015. "The performance of small scale multi-generation technologies in achieving cost-optimal and zero-energy office building solutions," Applied Energy, Elsevier, vol. 152(C), pages 94-108.
    4. Liu, Ming & Yan, JunJie & Chong, DaoTong & Liu, JiPing & Wang, JinShi, 2013. "Thermodynamic analysis of pre-drying methods for pre-dried lignite-fired power plant," Energy, Elsevier, vol. 49(C), pages 107-118.
    5. Mikkola, Jani & Lund, Peter D., 2016. "Modeling flexibility and optimal use of existing power plants with large-scale variable renewable power schemes," Energy, Elsevier, vol. 112(C), pages 364-375.
    6. Romanchenko, Dmytro & Odenberger, Mikael & Göransson, Lisa & Johnsson, Filip, 2017. "Impact of electricity price fluctuations on the operation of district heating systems: A case study of district heating in Göteborg, Sweden," Applied Energy, Elsevier, vol. 204(C), pages 16-30.
    7. Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.
    8. Wang, Chaoyang & Zhao, Yongliang & Liu, Ming & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio," Applied Energy, Elsevier, vol. 216(C), pages 212-223.
    9. Hou, Hongjuan & Wu, Junjie & Yang, Yongping & Hu, Eric & Chen, Si, 2015. "Performance of a solar aided power plant in fuel saving mode," Applied Energy, Elsevier, vol. 160(C), pages 873-881.
    10. Kopiske, Jakob & Spieker, Sebastian & Tsatsaronis, George, 2017. "Value of power plant flexibility in power systems with high shares of variable renewables: A scenario outlook for Germany 2035," Energy, Elsevier, vol. 137(C), pages 823-833.
    11. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    12. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    13. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Congyu & Song, Jiwei, 2023. "Performance assessment of the novel coal-fired combined heat and power plant integrating with flexibility renovations," Energy, Elsevier, vol. 263(PC).
    2. Liu, Ming & Wang, Shan & Zhao, Yongliang & Tang, Haiyu & Yan, Junjie, 2019. "Heat–power decoupling technologies for coal-fired CHP plants: Operation flexibility and thermodynamic performance," Energy, Elsevier, vol. 188(C).
    3. Wang, Yanhong & Cao, Lihua & Hu, Pengfei & Li, Bo & Li, Yong, 2019. "Model establishment and performance evaluation of a modified regenerative system for a 660 MW supercritical unit running at the IPT-setting mode," Energy, Elsevier, vol. 179(C), pages 890-915.
    4. Yin, Linfei & Xie, Jiaxing, 2022. "Multi-feature-scale fusion temporal convolution networks for metal temperature forecasting of ultra-supercritical coal-fired power plant reheater tubes," Energy, Elsevier, vol. 238(PA).
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.
    7. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    8. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    9. Chen, Chen & Liu, Ming & Li, Mengjie & Wang, Yu & Wang, Chaoyang & Yan, Junjie, 2024. "Digital twin modeling and operation optimization of the steam turbine system of thermal power plants," Energy, Elsevier, vol. 290(C).
    10. Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).
    11. Yan, Hui & Liu, Ming & Wang, Zhu & Zhang, Kezhen & Chong, Daotong & Yan, Junjie, 2023. "Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions," Energy, Elsevier, vol. 262(PA).
    12. Sannamari Pilpola & Vahid Arabzadeh & Jani Mikkola & Peter D. Lund, 2019. "Analyzing National and Local Pathways to Carbon-Neutrality from Technology, Emissions, and Resilience Perspectives—Case of Finland," Energies, MDPI, vol. 12(5), pages 1-22, March.
    13. Wang, Zhu & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Chong, Daotong & Yan, Junjie, 2020. "Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage," Energy, Elsevier, vol. 201(C).
    14. Ahmad, Munir & Khan, Irfan & Shahzad Khan, Muhammad Qaiser & Jabeen, Gul & Jabeen, Hafiza Samra & Işık, Cem, 2023. "Households' perception-based factors influencing biogas adoption: Innovation diffusion framework," Energy, Elsevier, vol. 263(PE).
    15. Mohammad Qasem & Omar Mohamed & Wejdan Abu Elhaija, 2022. "Parameter Identification and Sliding Pressure Control of a Supercritical Power Plant Using Whale Optimizer," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    16. Panos, Evangelos & Kober, Tom & Wokaun, Alexander, 2019. "Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    17. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    18. Dominković, D.F. & Weinand, J.M. & Scheller, F. & D'Andrea, M. & McKenna, R., 2022. "Reviewing two decades of energy system analysis with bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    19. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Qiao, Yongqiang & Yan, Junjie, 2018. "Entropy generation analysis on a heat exchanger with different design and operation factors during transient processes," Energy, Elsevier, vol. 158(C), pages 330-342.
    20. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220321290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.