IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p8039-d853410.html
   My bibliography  Save this article

Parameter Identification and Sliding Pressure Control of a Supercritical Power Plant Using Whale Optimizer

Author

Listed:
  • Mohammad Qasem

    (Department of Electrical Engineering, King Abdullah I School of Graduate Studies and Scientific Research, Princess Sumaya University for Technology, Amman 11941, Jordan)

  • Omar Mohamed

    (Department of Electrical Engineering, King Abdullah I School of Graduate Studies and Scientific Research, Princess Sumaya University for Technology, Amman 11941, Jordan)

  • Wejdan Abu Elhaija

    (Department of Electrical Engineering, King Abdullah I School of Graduate Studies and Scientific Research, Princess Sumaya University for Technology, Amman 11941, Jordan)

Abstract

Sliding pressure control is a well-known method of controlling supercritical power plants that improves energy efficiency and reduces pressure dynamic stresses. This paper presents a novel approach for developing a supercritical cleaner coal power plant’s sliding pressure control strategy. First, using Whale Optimizer, a nonlinear identified transfer matrix model was created (WO). By comparing simulations and errors, the WO clearly outperforms the GA and Grey-Wolf Optimizer (GWO) techniques on parameter identification. The model also includes a multivariable PI/PD controller for improved plant operation. Again, WO controller tuning outperformed GA and GWO in terms of pressure deviations, power deviations, rise time, and fuel usage. It is now argued that the WO is superior to other techniques in modeling and controlling system dynamics, energy efficiency, and cleaner operation.

Suggested Citation

  • Mohammad Qasem & Omar Mohamed & Wejdan Abu Elhaija, 2022. "Parameter Identification and Sliding Pressure Control of a Supercritical Power Plant Using Whale Optimizer," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8039-:d:853410
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/8039/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/8039/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.
    2. Xiufan Liang & Yiguo Li & Xiao Wu & Jiong Shen, 2018. "Nonlinear Modeling and Inferential Multi-Model Predictive Control of a Pulverizing System in a Coal-Fired Power Plant Based on Moving Horizon Estimation," Energies, MDPI, vol. 11(3), pages 1-27, March.
    3. Wang, Chaoyang & Zhao, Yongliang & Liu, Ming & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio," Applied Energy, Elsevier, vol. 216(C), pages 212-223.
    4. Huang, Congzhi & Sheng, Xinxin, 2020. "Data-driven model identification of boiler-turbine coupled process in 1000 MW ultra-supercritical unit by improved bird swarm algorithm," Energy, Elsevier, vol. 205(C).
    5. Gengjin Shi & Zhenlong Wu & Jian Guo & Donghai Li & Yanjun Ding, 2020. "Superheated Steam Temperature Control Based on a Hybrid Active Disturbance Rejection Control," Energies, MDPI, vol. 13(7), pages 1-26, April.
    6. Taehyun Lee & Eungsu Han & Un-Chul Moon & Kwang Y. Lee, 2020. "Supplementary Control of Air–Fuel Ratio Using Dynamic Matrix Control for Thermal Power Plant Emission," Energies, MDPI, vol. 13(1), pages 1-15, January.
    7. Al-Momani, Ahmad & Mohamed, Omar & Abu Elhaija, Wejdan, 2022. "Multiple processes modeling and identification for a cleaner supercritical power plant via Grey Wolf Optimizer," Energy, Elsevier, vol. 252(C).
    8. Omar Mohamed & Ashraf Khalil & Jihong Wang, 2020. "Modeling and Control of Supercritical and Ultra-Supercritical Power Plants: A Review," Energies, MDPI, vol. 13(11), pages 1-23, June.
    9. Liu, Ji-Zhen & Yan, Shu & Zeng, De-Liang & Hu, Yong & Lv, You, 2015. "A dynamic model used for controller design of a coal fired once-through boiler-turbine unit," Energy, Elsevier, vol. 93(P2), pages 2069-2078.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Chunying & Sun, Lingfang & Piao, Heng & Yao, Lijia, 2024. "Adaptive fuzzy finite time integral sliding mode control of the coordinated system for 350 MW supercritical once-through boiler unit to enhance flexibility," Energy, Elsevier, vol. 302(C).
    2. Esmaeili, Mohammad & Moradi, Hamed, 2023. "Robust & nonlinear control of an ultra-supercritical coal fired once-through boiler-turbine unit in order to optimize the uncertain problem," Energy, Elsevier, vol. 282(C).
    3. Al-Momani, Ahmad & Mohamed, Omar & Abu Elhaija, Wejdan, 2022. "Multiple processes modeling and identification for a cleaner supercritical power plant via Grey Wolf Optimizer," Energy, Elsevier, vol. 252(C).
    4. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    5. Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).
    6. Wang, Yanhong & Cao, Lihua & Hu, Pengfei & Li, Bo & Li, Yong, 2019. "Model establishment and performance evaluation of a modified regenerative system for a 660 MW supercritical unit running at the IPT-setting mode," Energy, Elsevier, vol. 179(C), pages 890-915.
    7. Yin, Linfei & Xie, Jiaxing, 2022. "Multi-feature-scale fusion temporal convolution networks for metal temperature forecasting of ultra-supercritical coal-fired power plant reheater tubes," Energy, Elsevier, vol. 238(PA).
    8. Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.
    9. Wang, Di & Zhou, Yu & Si, Long & Sun, Lingfang & Zhou, Yunlong, 2024. "Performance study of 660 MW coal-fired power plant coupled transcritical carbon dioxide energy storage cycle: Sensitivity and dynamic characteristic analysis," Energy, Elsevier, vol. 293(C).
    10. Chen, Chen & Liu, Ming & Li, Mengjie & Wang, Yu & Wang, Chaoyang & Yan, Junjie, 2024. "Digital twin modeling and operation optimization of the steam turbine system of thermal power plants," Energy, Elsevier, vol. 290(C).
    11. Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).
    12. Yan, Hui & Liu, Ming & Wang, Zhu & Zhang, Kezhen & Chong, Daotong & Yan, Junjie, 2023. "Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions," Energy, Elsevier, vol. 262(PA).
    13. Fan, He & Su, Zhi-gang & Wang, Pei-hong & Lee, Kwang Y., 2021. "A dynamic nonlinear model for a wide-load range operation of ultra-supercritical once-through boiler-turbine units," Energy, Elsevier, vol. 226(C).
    14. Andrés Meana-Fernández & Juan M. González-Caballín & Roberto Martínez-Pérez & Francisco J. Rubio-Serrano & Antonio J. Gutiérrez-Trashorras, 2022. "Power Plant Cycles: Evolution towards More Sustainable and Environmentally Friendly Technologies," Energies, MDPI, vol. 15(23), pages 1-27, November.
    15. Liu, Ming & Wang, Shan & Yan, Junjie, 2021. "Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm," Energy, Elsevier, vol. 214(C).
    16. Omar Mohamed & Ashraf Khalil & Jihong Wang, 2020. "Modeling and Control of Supercritical and Ultra-Supercritical Power Plants: A Review," Energies, MDPI, vol. 13(11), pages 1-23, June.
    17. Wang, Congyu & Song, Jiwei, 2023. "Performance assessment of the novel coal-fired combined heat and power plant integrating with flexibility renovations," Energy, Elsevier, vol. 263(PC).
    18. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Qiao, Yongqiang & Yan, Junjie, 2018. "Entropy generation analysis on a heat exchanger with different design and operation factors during transient processes," Energy, Elsevier, vol. 158(C), pages 330-342.
    19. Liu, Ming & Wang, Shan & Zhao, Yongliang & Tang, Haiyu & Yan, Junjie, 2019. "Heat–power decoupling technologies for coal-fired CHP plants: Operation flexibility and thermodynamic performance," Energy, Elsevier, vol. 188(C).
    20. Zhu, Shahong & Zhang, Man & Huang, Yiqun & Wu, Yuxin & Yang, Hairui & Lyu, Junfu & Gao, Xinyu & Wang, Fengjun & Yue, Guangxi, 2019. "Thermodynamic analysis of a 660 MW ultra-supercritical CFB boiler unit," Energy, Elsevier, vol. 173(C), pages 352-363.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8039-:d:853410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.