IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v290y2021i3p1046-1062.html
   My bibliography  Save this article

Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations

Author

Listed:
  • Cui, Zhenyu
  • Kirkby, J. Lars
  • Nguyen, Duy

Abstract

We propose a novel Monte Carlo simulation method for two-dimensional stochastic differential equation (SDE) systems based on approximation through continuous-time Markov chains (CTMCs). Specifically, we propose an efficient simulation framework for asset prices under general stochastic local volatility (SLV) models arising in finance, which includes the Heston and the stochastic alpha beta rho (SABR) models as special cases. Our simulation algorithm is constructed based on approximating the latent stochastic variance process by a CTMC. Compared with time-discretization schemes, our method exhibits several advantages, including flexible boundary condition treatment, weak continuity conditions imposed on coefficients, and a second order convergence rate in the spatial grids of the approximating CTMC under suitable regularity conditions. Replacing the stochastic variance process with a discrete-state approximation greatly simplifies the direct sampling of the integrated variance, thus enabling a highly efficient simulation scheme. Extensive numerical examples illustrate the accuracy and efficiency of our estimator, which outperforms both biased and unbiased simulation estimators in the literature in terms of root mean squared error (RMSE) and computational time. This paper is focused primarily on the simulation of SDEs which arise in finance, but this new simulation approach has potential for applications in other contextual areas in operations research, such as queuing theory.

Suggested Citation

  • Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
  • Handle: RePEc:eee:ejores:v:290:y:2021:i:3:p:1046-1062
    DOI: 10.1016/j.ejor.2020.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720307943
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gongqiu Zhang & Lingfei Li, 2019. "Analysis of Markov Chain Approximation for Option Pricing and Hedging: Grid Design and Convergence Behavior," Operations Research, INFORMS, vol. 67(2), pages 407-427, March.
    2. Shiraya, Kenichiro & Takahashi, Akihiko, 2017. "A general control variate method for multi-dimensional SDEs: An application to multi-asset options under local stochastic volatility with jumps models in finance," European Journal of Operational Research, Elsevier, vol. 258(1), pages 358-371.
    3. Carole Bernard & Zhenyu Cui, 2014. "Prices and Asymptotics for Discrete Variance Swaps," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(2), pages 140-173, April.
    4. Kenichiro Shiraya & Hiroki Uenishi & Akira Yamazaki, 2019. "A General Control Variate Method for Lévy Models in Finance (Published in European Journal of Operational Research.)," CARF F-Series CARF-F-455, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2020.
    5. Anthonie W. Van Der Stoep & Lech A. Grzelak & Cornelis W. Oosterlee, 2014. "The Heston Stochastic-Local Volatility Model: Efficient Monte Carlo Simulation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(07), pages 1-30.
    6. Bin Chen & Cornelis W. Oosterlee & Hans Van Der Weide, 2012. "A Low-Bias Simulation Scheme For The Sabr Stochastic Volatility Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-37.
    7. Alexander Van Haastrecht & Antoon Pelsser, 2010. "Efficient, Almost Exact Simulation Of The Heston Stochastic Volatility Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 1-43.
    8. Dassios, Angelos & Zhao, Hongbiao, 2013. "Exact simulation of Hawkes process with exponentially decaying intensity," LSE Research Online Documents on Economics 51370, London School of Economics and Political Science, LSE Library.
    9. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    10. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    11. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    12. Carole Bernard & Zhenyu Cui & Don McLeish, 2017. "On The Martingale Property In Stochastic Volatility Models Based On Time-Homogeneous Diffusions," Mathematical Finance, Wiley Blackwell, vol. 27(1), pages 194-223, January.
    13. Angelos Dassios & Hongbiao Zhao, 2017. "Efficient Simulation of Clustering Jumps with CIR Intensity," Operations Research, INFORMS, vol. 65(6), pages 1494-1515, December.
    14. Chulmin Kang & Wanmo Kang & Jong Mun Lee, 2017. "Exact Simulation of the Wishart Multidimensional Stochastic Volatility Model," Operations Research, INFORMS, vol. 65(5), pages 1190-1206, October.
    15. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
    16. Dassios, Angelos & Zhao, Hongbiao, 2017. "Efficient simulation of clustering jumps with CIR intensity," LSE Research Online Documents on Economics 74205, London School of Economics and Political Science, LSE Library.
    17. Peter Carr & Roger Lee & Liuren Wu, 2012. "Variance swaps on time-changed Lévy processes," Finance and Stochastics, Springer, vol. 16(2), pages 335-355, April.
    18. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    19. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    20. Xie, Fei & He, Zhijian & Wang, Xiaoqun, 2019. "An importance sampling-based smoothing approach for quasi-Monte Carlo simulation of discrete barrier options," European Journal of Operational Research, Elsevier, vol. 274(2), pages 759-772.
    21. Lingfei Li & Gongqiu Zhang, 2018. "Error analysis of finite difference and Markov chain approximations for option pricing," Mathematical Finance, Wiley Blackwell, vol. 28(3), pages 877-919, July.
    22. Li, Chenxu & Wu, Linjia, 2019. "Exact simulation of the Ornstein–Uhlenbeck driven stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 275(2), pages 768-779.
    23. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    24. Kirkby, J. Lars & Nguyen, Dang H. & Nguyen, Duy, 2020. "A general continuous time Markov chain approximation for multi-asset option pricing with systems of correlated diffusions," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    25. Pun, Chi Seng & Chung, Shing Fung & Wong, Hoi Ying, 2015. "Variance swap with mean reversion, multifactor stochastic volatility and jumps," European Journal of Operational Research, Elsevier, vol. 245(2), pages 571-580.
    26. Kay Giesecke & Dmitry Smelov, 2013. "Exact Sampling of Jump Diffusions," Operations Research, INFORMS, vol. 61(4), pages 894-907, August.
    27. Ning Cai & Yingda Song & Steven Kou, 2015. "A General Framework for Pricing Asian Options Under Markov Processes," Operations Research, INFORMS, vol. 63(3), pages 540-554, June.
    28. Konstantinidi, Eirini & Skiadopoulos, George, 2016. "How does the market variance risk premium vary over time? Evidence from S&P 500 variance swap investment returns," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 62-75.
    29. Yingda Song & Ning Cai & Steven Kou, 2018. "Computable Error Bounds of Laplace Inversion for Pricing Asian Options," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 634-645, January.
    30. Shlomo Halfin & Ward Whitt, 1981. "Heavy-Traffic Limits for Queues with Many Exponential Servers," Operations Research, INFORMS, vol. 29(3), pages 567-588, June.
    31. Zhenyu Cui & J. Lars Kirkby & Guanghua Lian & Duy Nguyen, 2017. "Integral Representation Of Probability Density Of Stochastic Volatility Models And Timer Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    32. Jean-Francois Chassagneux & Antoine Jacquier & Ivo Mihaylov, 2014. "An explicit Euler scheme with strong rate of convergence for financial SDEs with non-Lipschitz coefficients," Papers 1405.3561, arXiv.org, revised Apr 2016.
    33. Nan Chen & Nian Yang, 2019. "The principle of not feeling the boundary for the SABR model," Quantitative Finance, Taylor & Francis Journals, vol. 19(3), pages 427-436, March.
    34. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
    35. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    36. Weng, Chengfeng & Wang, Xiaoqun & He, Zhijian, 2016. "An auto-realignment method in quasi-Monte Carlo for pricing financial derivatives with jump structures," European Journal of Operational Research, Elsevier, vol. 254(1), pages 304-311.
    37. Hélyette Geman & Marc Yor, 1993. "Bessel Processes, Asian Options, And Perpetuities," Mathematical Finance, Wiley Blackwell, vol. 3(4), pages 349-375, October.
    38. Justin Lars Kirkby & Shijie Deng, 2019. "Static hedging and pricing of exotic options with payoff frames," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 612-658, April.
    39. Shiraya, Kenichiro & Uenishi, Hiroki & Yamazaki, Akira, 2020. "A general control variate method for Lévy models in finance," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1190-1200.
    40. Yang, Nian & Chen, Nan & Liu, Yanchu & Wan, Xiangwei, 2017. "Approximate arbitrage-free option pricing under the SABR model," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 198-214.
    41. Cui, Zhenyu & Lee, Chihoon & Liu, Yanchu, 2018. "Single-transform formulas for pricing Asian options in a general approximation framework under Markov processes," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1134-1139.
    42. Chia Chun Lo & Konstantinos Skindilias, 2014. "An Improved Markov Chain Approximation Methodology: Derivatives Pricing And Model Calibration," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(07), pages 1-22.
    43. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    44. Da Fonseca, José & Martini, Claude, 2016. "The α-hypergeometric stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1472-1502.
    45. Jan Baldeaux, 2012. "Exact Simulation Of The 3/2 Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(05), pages 1-13.
    46. Wendong Zheng & Yue Kuen Kwok, 2014. "Closed Form Pricing Formulas For Discretely Sampled Generalized Variance Swaps," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 855-881, October.
    47. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    48. Chang-Han Rhee & Peter W. Glynn, 2015. "Unbiased Estimation with Square Root Convergence for SDE Models," Operations Research, INFORMS, vol. 63(5), pages 1026-1043, October.
    49. Alexandru Badescu & Yuyu Chen & Matthew Couch & Zhenyu Cui, 2019. "Variance swaps valuation under non-affine GARCH models and their diffusion limits," Quantitative Finance, Taylor & Francis Journals, vol. 19(2), pages 227-246, February.
    50. Ning Cai & Yingda Song & Nan Chen, 2017. "Exact Simulation of the SABR Model," Operations Research, INFORMS, vol. 65(4), pages 931-951, August.
    51. Martino Grasselli, 2017. "The 4/2 Stochastic Volatility Model: A Unified Approach For The Heston And The 3/2 Model," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1013-1034, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaehyuk Choi & Byoung Ki Seo, 2023. "Option pricing under the normal SABR model with Gaussian quadratures," Papers 2301.02797, arXiv.org.
    2. Pingping Zeng & Ziqing Xu & Pingping Jiang & Yue Kuen Kwok, 2023. "Analytical solvability and exact simulation in models with affine stochastic volatility and Lévy jumps," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 842-890, July.
    3. Kim, Donghyun & Choi, Sun-Yong & Yoon, Ji-Hun, 2021. "Pricing of vulnerable options under hybrid stochastic and local volatility," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Marie-Claude Vachon & Anne Mackay, 2024. "A Unifying Approach for the Pricing of Debt Securities," Papers 2403.06303, arXiv.org, revised Oct 2024.
    5. Jaehyuk Choi, 2024. "Exact simulation scheme for the Ornstein-Uhlenbeck driven stochastic volatility model with the Karhunen-Lo\`eve expansions," Papers 2402.09243, arXiv.org.
    6. Teng, Ye & Zhang, Zhimin, 2023. "Finite-time expected present value of operating costs until ruin in a Cox risk model with periodic observation," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    7. Kirkby, J. Lars, 2023. "Hybrid equity swap, cap, and floor pricing under stochastic interest by Markov chain approximation," European Journal of Operational Research, Elsevier, vol. 305(2), pages 961-978.
    8. Zhang, Zhimin & Zhong, Wei, 2024. "Efficient valuation of guaranteed minimum accumulation benefits in regime switching jump diffusion models with lapse risk," Applied Mathematics and Computation, Elsevier, vol. 478(C).
    9. Kirkby, J. Lars & Leitao, Álvaro & Nguyen, Duy, 2021. "Nonparametric density estimation and bandwidth selection with B-spline bases: A novel Galerkin method," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    10. Kirkby, J.L. & Nguyen, Dang H. & Nguyen, Duy & Nguyen, Nhu N., 2022. "Maximum likelihood estimation of diffusions by continuous time Markov chain," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    11. Jaehyuk Choi & Lilian Hu & Yue Kuen Kwok, 2024. "Efficient simulation of the SABR model," Papers 2408.01898, arXiv.org.
    12. Yanchun Zhao & Mengzhu Zhang & Qian Ni & Xuhui Wang, 2023. "Adaptive Nonparametric Density Estimation with B-Spline Bases," Mathematics, MDPI, vol. 11(2), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    2. Pingping Zeng & Ziqing Xu & Pingping Jiang & Yue Kuen Kwok, 2023. "Analytical solvability and exact simulation in models with affine stochastic volatility and Lévy jumps," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 842-890, July.
    3. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
    4. Li, Chenxu & Wu, Linjia, 2019. "Exact simulation of the Ornstein–Uhlenbeck driven stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 275(2), pages 768-779.
    5. Choi, Jaehyuk & Kwok, Yue Kuen, 2024. "Simulation schemes for the Heston model with Poisson conditioning," European Journal of Operational Research, Elsevier, vol. 314(1), pages 363-376.
    6. Kirkby, J. Lars, 2023. "Hybrid equity swap, cap, and floor pricing under stochastic interest by Markov chain approximation," European Journal of Operational Research, Elsevier, vol. 305(2), pages 961-978.
    7. Brignone, Riccardo & Gonzato, Luca, 2024. "Exact simulation of the Hull and White stochastic volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    8. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
    9. Kirkby, J.L. & Nguyen, Dang H. & Nguyen, Duy & Nguyen, Nhu N., 2022. "Maximum likelihood estimation of diffusions by continuous time Markov chain," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    10. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    11. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.
    12. Kahalé, Nabil, 2020. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," European Journal of Operational Research, Elsevier, vol. 287(2), pages 739-748.
    13. Zhenyu Cui & Anne MacKay & Marie-Claude Vachon, 2022. "Analysis of VIX-linked fee incentives in variable annuities via continuous-time Markov chain approximation," Papers 2207.14793, arXiv.org.
    14. Jaehyuk Choi & Yue Kuen Kwok, 2023. "Simulation schemes for the Heston model with Poisson conditioning," Papers 2301.02800, arXiv.org, revised Nov 2023.
    15. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2023. "Shot-noise cojumps: exact simulation and option pricing," LSE Research Online Documents on Economics 111537, London School of Economics and Political Science, LSE Library.
    16. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    17. Wensheng Yang & Jingtang Ma & Zhenyu Cui, 2021. "Analysis of Markov chain approximation for Asian options and occupation-time derivatives: Greeks and convergence rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 359-412, April.
    18. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    19. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    20. Ning Cai & Yingda Song & Nan Chen, 2017. "Exact Simulation of the SABR Model," Operations Research, INFORMS, vol. 65(4), pages 931-951, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:290:y:2021:i:3:p:1046-1062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.