IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v262y2017i1p381-400.html
   My bibliography  Save this article

A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps

Author

Listed:
  • Cui, Zhenyu
  • Lars Kirkby, J.
  • Nguyen, Duy

Abstract

After the recent financial crisis, the market for volatility derivatives has expanded rapidly to meet the demand from investors, risk managers and speculators seeking diversification of the volatility risk. In this paper, we develop a novel and efficient transform-based method to price swaps and options related to discretely-sampled realized variance under a general class of stochastic volatility models with jumps. We utilize frame duality and density projection method combined with a novel continuous-time Markov chain (CTMC) weak approximation scheme of the underlying variance process. Contracts considered include discrete variance swaps, discrete variance options, and discrete volatility options. Models considered include several popular stochastic volatility models with a general jump size distribution: Heston, Scott, Hull–White, Stein–Stein, α-Hypergeometric, 3/2 and 4/2 models. Our framework encompasses and extends the current literature on discretely sampled volatility derivatives, and provides highly efficient and accurate valuation methods. Numerical experiments confirm our findings.

Suggested Citation

  • Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
  • Handle: RePEc:eee:ejores:v:262:y:2017:i:1:p:381-400
    DOI: 10.1016/j.ejor.2017.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717303405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lian, Guanghua & Chiarella, Carl & Kalev, Petko S., 2014. "Volatility swaps and volatility options on discretely sampled realized variance," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 239-262.
    2. Carole Bernard & Zhenyu Cui, 2014. "Prices and Asymptotics for Discrete Variance Swaps," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(2), pages 140-173, April.
    3. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    4. Windcliff, H. & Forsyth, P.A. & Vetzal, K.R., 2006. "Pricing methods and hedging strategies for volatility derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 409-431, February.
    5. Recchioni, M.C. & Sun, Y., 2016. "An explicitly solvable Heston model with stochastic interest rate," European Journal of Operational Research, Elsevier, vol. 249(1), pages 359-377.
    6. Da Fonseca, José, 2016. "On moment non-explosions for Wishart-based stochastic volatility models," European Journal of Operational Research, Elsevier, vol. 254(3), pages 889-894.
    7. Fusai, Gianluca & Germano, Guido & Marazzina, Daniele, 2016. "Spitzer identity, Wiener-Hopf factorization and pricing of discretely monitored exotic options," European Journal of Operational Research, Elsevier, vol. 251(1), pages 124-134.
    8. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    9. Paul Schneider & Fabio Trojani, 2015. "Divergence and the Price of Uncertainty," Swiss Finance Institute Research Paper Series 15-60, Swiss Finance Institute.
    10. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    11. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
    12. Peter Carr & Roger Lee & Liuren Wu, 2012. "Variance swaps on time-changed Lévy processes," Finance and Stochastics, Springer, vol. 16(2), pages 335-355, April.
    13. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    14. Bao, Qunfang & Li, Shenghong & Gong, Donggeng, 2012. "Pricing VXX option with default risk and positive volatility skew," European Journal of Operational Research, Elsevier, vol. 223(1), pages 246-255.
    15. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    16. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    17. Gurdip Bakshi & Nikunj Kapadia, 2003. "Delta-Hedged Gains and the Negative Market Volatility Risk Premium," The Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 527-566.
    18. Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
    19. Pun, Chi Seng & Chung, Shing Fung & Wong, Hoi Ying, 2015. "Variance swap with mean reversion, multifactor stochastic volatility and jumps," European Journal of Operational Research, Elsevier, vol. 245(2), pages 571-580.
    20. Jing Li & Lingfei Li & Rafael Mendoza-Arriaga, 2016. "Additive subordination and its applications in finance," Finance and Stochastics, Springer, vol. 20(3), pages 589-634, July.
    21. Sam Howison & Avraam Rafailidis & Henrik Rasmussen, 2004. "On the pricing and hedging of volatility derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(4), pages 317-346.
    22. Konstantinidi, Eirini & Skiadopoulos, George, 2016. "How does the market variance risk premium vary over time? Evidence from S&P 500 variance swap investment returns," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 62-75.
    23. Damien Ackerer & Damir Filipovic & Sergio Pulido, 2017. "The Jacobi Stochastic Volatility Model," Working Papers hal-01338330, HAL.
    24. Grzelak, Lech & Oosterlee, Kees, 2009. "On The Heston Model with Stochastic Interest Rates," MPRA Paper 20620, University Library of Munich, Germany, revised 18 Jan 2010.
    25. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    26. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    27. Ian Martin, 2011. "Simple Variance Swaps," NBER Working Papers 16884, National Bureau of Economic Research, Inc.
    28. Neumann, Maximilian & Prokopczuk, Marcel & Wese Simen, Chardin, 2016. "Jump and variance risk premia in the S&P 500," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 72-83.
    29. Roman Kozhan & Anthony Neuberger & Paul Schneider, 2013. "The Skew Risk Premium in the Equity Index Market," The Review of Financial Studies, Society for Financial Studies, vol. 26(9), pages 2174-2203.
    30. Viktor Todorov, 2010. "Variance Risk-Premium Dynamics: The Role of Jumps," The Review of Financial Studies, Society for Financial Studies, vol. 23(1), pages 345-383, January.
    31. Wong, Hoi Ying & Lo, Yu Wai, 2009. "Option pricing with mean reversion and stochastic volatility," European Journal of Operational Research, Elsevier, vol. 197(1), pages 179-187, August.
    32. Anthony Neuberger, 2012. "Realized Skewness," The Review of Financial Studies, Society for Financial Studies, vol. 25(11), pages 3423-3455.
    33. Peter Carr & Liuren Wu, 2003. "What Type of Process Underlies Options? A Simple Robust Test," Journal of Finance, American Finance Association, vol. 58(6), pages 2581-2610, December.
    34. Coqueret, Guillaume & Tavin, Bertrand, 2016. "An investigation of model risk in a market with jumps and stochastic volatility," European Journal of Operational Research, Elsevier, vol. 253(3), pages 648-658.
    35. Johannes Rauch & Carol Alexander, 2016. "Tail Risk Premia for Long-Term Equity Investors," Papers 1602.00865, arXiv.org.
    36. Filipović, Damir & Gourier, Elise & Mancini, Loriano, 2016. "Quadratic variance swap models," Journal of Financial Economics, Elsevier, vol. 119(1), pages 44-68.
    37. Dotsis, George, 2017. "The market price of risk of the variance term structure," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 41-52.
    38. Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
    39. Robert Jarrow & Younes Kchia & Martin Larsson & Philip Protter, 2013. "Discretely sampled variance and volatility swaps versus their continuous approximations," Finance and Stochastics, Springer, vol. 17(2), pages 305-324, April.
    40. Lee, Suzanne S. & Hannig, Jan, 2010. "Detecting jumps from Lévy jump diffusion processes," Journal of Financial Economics, Elsevier, vol. 96(2), pages 271-290, May.
    41. Carol Alexander & Johannes Rauch, 2016. "Model-Free Discretisation-Invariant Swap Contracts," Papers 1602.00235, arXiv.org, revised Apr 2016.
    42. Mrázek, Milan & Pospíšil, Jan & Sobotka, Tomáš, 2016. "On calibration of stochastic and fractional stochastic volatility models," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1036-1046.
    43. Schneider, Paul, 2015. "Generalized risk premia," Journal of Financial Economics, Elsevier, vol. 116(3), pages 487-504.
    44. Damien Ackerer & Damir Filipović & Sergio Pulido, 2016. "The Jacobi Stochastic Volatility Model," Swiss Finance Institute Research Paper Series 16-35, Swiss Finance Institute, revised Jun 2016.
    45. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
    46. Date, Paresh & Islyaev, Suren, 2015. "A fast calibrating volatility model for option pricing," European Journal of Operational Research, Elsevier, vol. 243(2), pages 599-606.
    47. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    48. Da Fonseca, José & Martini, Claude, 2016. "The α-hypergeometric stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1472-1502.
    49. Peter Carr & Roger Lee, 2009. "Volatility Derivatives," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 319-339, November.
    50. Wendong Zheng & Yue Kuen Kwok, 2014. "Closed Form Pricing Formulas For Discretely Sampled Generalized Variance Swaps," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 855-881, October.
    51. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    52. Bhat, Harish S. & Kumar, Nitesh, 2012. "Option pricing under a normal mixture distribution derived from the Markov tree model," European Journal of Operational Research, Elsevier, vol. 223(3), pages 762-774.
    53. Wang, Hao & Zhou, Hao & Zhou, Yi, 2013. "Credit default swap spreads and variance risk premia," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3733-3746.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    2. Ben-Zhang Yang & Jia Yue & Nan-Jing Huang, 2019. "Equilibrium Price Of Variance Swaps Under Stochastic Volatility With Lévy Jumps And Stochastic Interest Rate," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-33, June.
    3. Yang, Ben-Zhang & Yue, Jia & Wang, Ming-Hui & Huang, Nan-Jing, 2019. "Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 73-84.
    4. Carol Alexander & Johannes Rauch, 2016. "Model-Free Discretisation-Invariant Swap Contracts," Papers 1602.00235, arXiv.org, revised Apr 2016.
    5. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2017. "Equity-linked annuity pricing with cliquet-style guarantees in regime-switching and stochastic volatility models with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 46-62.
    6. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    7. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    8. Ben-zhang Yang & Jia Yue & Nan-jing Huang, 2017. "Variance swaps under L\'{e}vy process with stochastic volatility and stochastic interest rate in incomplete markets," Papers 1712.10105, arXiv.org, revised Mar 2018.
    9. Wu, Bin & Chen, Pengzhan & Ye, Wuyi, 2024. "Variance swaps with mean reversion and multi-factor variance," European Journal of Operational Research, Elsevier, vol. 315(1), pages 191-212.
    10. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, October.
    11. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    12. Wendong Zheng & Pingping Zeng, 2015. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Papers 1504.08136, arXiv.org.
    13. Johannes Rauch & Carol Alexander, 2016. "Tail Risk Premia for Long-Term Equity Investors," Papers 1602.00865, arXiv.org.
    14. Wendong Zheng & Pingping Zeng, 2016. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 344-373, September.
    15. Lian, Guanghua & Chiarella, Carl & Kalev, Petko S., 2014. "Volatility swaps and volatility options on discretely sampled realized variance," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 239-262.
    16. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    17. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    18. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    19. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    20. Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:262:y:2017:i:1:p:381-400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.