IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v266y2018i3p1134-1139.html
   My bibliography  Save this article

Single-transform formulas for pricing Asian options in a general approximation framework under Markov processes

Author

Listed:
  • Cui, Zhenyu
  • Lee, Chihoon
  • Liu, Yanchu

Abstract

Recently, Cai, Song, and Kou (2015) proposed closed-form double transform approximation formulas for prices of both discretely and continuously monitored Asian options under the setting of a general continuous-time Markov chain. In this note, we analytically invert the Z-transform and the Laplace transform involved in their final results, respectively, for the discretely and the continuously monitored cases, and we obtain explicit single Laplace transforms of option prices. This reduction in the dimension of numerical integral has meaningful consequences both in computational efficiency and in practical implementation of the formulas. Extensive numerical experiments illustrate the improved performance of our results.

Suggested Citation

  • Cui, Zhenyu & Lee, Chihoon & Liu, Yanchu, 2018. "Single-transform formulas for pricing Asian options in a general approximation framework under Markov processes," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1134-1139.
  • Handle: RePEc:eee:ejores:v:266:y:2018:i:3:p:1134-1139
    DOI: 10.1016/j.ejor.2017.10.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717309621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.10.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ning Cai & Chenxu Li & Chao Shi, 2014. "Closed-Form Expansions of Discretely Monitored Asian Options in Diffusion Models," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 789-822, August.
    2. Shiraya, Kenichiro & Takahashi, Akihiko, 2017. "A general control variate method for multi-dimensional SDEs: An application to multi-asset options under local stochastic volatility with jumps models in finance," European Journal of Operational Research, Elsevier, vol. 258(1), pages 358-371.
    3. Fusai, Gianluca & Meucci, Attilio, 2008. "Pricing discretely monitored Asian options under Levy processes," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2076-2088, October.
    4. Ning Cai & Yingda Song & Steven Kou, 2015. "A General Framework for Pricing Asian Options Under Markov Processes," Operations Research, INFORMS, vol. 63(3), pages 540-554, June.
    5. Reynaerts, Huguette & Vanmaele, Michele & Dhaene, Jan & Deelstra, Griselda, 2006. "Bounds for the price of a European-style Asian option in a binary tree model," European Journal of Operational Research, Elsevier, vol. 168(2), pages 322-332, January.
    6. Fusai, Gianluca & Marena, Marina & Roncoroni, Andrea, 2008. "Analytical pricing of discretely monitored Asian-style options: Theory and application to commodity markets," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2033-2045, October.
    7. Vadim Linetsky, 2004. "Spectral Expansions for Asian (Average Price) Options," Operations Research, INFORMS, vol. 52(6), pages 856-867, December.
    8. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
    9. Sesana, Debora & Marazzina, Daniele & Fusai, Gianluca, 2014. "Pricing exotic derivatives exploiting structure," European Journal of Operational Research, Elsevier, vol. 236(1), pages 369-381.
    10. Ning Cai & Steven Kou, 2012. "Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model," Operations Research, INFORMS, vol. 60(1), pages 64-77, February.
    11. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2012. "A general control variate method for option pricing under Lévy processes," European Journal of Operational Research, Elsevier, vol. 221(2), pages 368-377.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kahalé, Nabil, 2020. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," European Journal of Operational Research, Elsevier, vol. 287(2), pages 739-748.
    2. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
    3. Zhenyu Cui & Chihoon Lee & Yanchu Liu, 2016. "On "A General Framework for Pricing Asian Options Under Markov Processes"," Papers 1601.05306, arXiv.org.
    4. Kenichiro Shiraya & Akihiko Takahashi, 2019. "Pricing Average and Spread Options Under Local-Stochastic Volatility Jump-Diffusion Models," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 303-333, February.
    5. Shiraya, Kenichiro & Takahashi, Akihiko, 2017. "A general control variate method for multi-dimensional SDEs: An application to multi-asset options under local stochastic volatility with jumps models in finance," European Journal of Operational Research, Elsevier, vol. 258(1), pages 358-371.
    6. Yingda Song & Ning Cai & Steven Kou, 2018. "Computable Error Bounds of Laplace Inversion for Pricing Asian Options," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 634-645, January.
    7. Weinan Zhang & Pingping Zeng, 2023. "A transform-based method for pricing Asian options under general two-dimensional models," Quantitative Finance, Taylor & Francis Journals, vol. 23(11), pages 1677-1697, November.
    8. Ning Cai & Yingda Song & Steven Kou, 2015. "A General Framework for Pricing Asian Options Under Markov Processes," Operations Research, INFORMS, vol. 63(3), pages 540-554, June.
    9. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    10. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    11. Hideharu Funahashi & Masaaki Kijima, 2017. "A unified approach for the pricing of options relating to averages," Review of Derivatives Research, Springer, vol. 20(3), pages 203-229, October.
    12. Dan Pirjol & Lingjiong Zhu, 2023. "Asymptotics for Short Maturity Asian Options in Jump-Diffusion models with Local Volatility," Papers 2308.15672, arXiv.org, revised Feb 2024.
    13. Kenichiro Shiraya & Hiroki Uenishi & Akira Yamazaki, 2019. "A General Control Variate Method for Lévy Models in Finance (Published in European Journal of Operational Research.)," CARF F-Series CARF-F-455, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2020.
    14. Kenichiro Shiraya & Akihiko Takahashi, 2015. "Pricing Average and Spread Options under Local-Stochastic Volatility Jump-Diffusion Models," CARF F-Series CARF-F-365, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    15. Shiraya, Kenichiro & Uenishi, Hiroki & Yamazaki, Akira, 2020. "A general control variate method for Lévy models in finance," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1190-1200.
    16. Kenichiro Shiraya & Akihiko Takahashi, 2015. "Pricing Average and Spread Options under Local-Stochastic Volatility Jump-Diffusion Models," CIRJE F-Series CIRJE-F-980, CIRJE, Faculty of Economics, University of Tokyo.
    17. Nabil Kahale, 2018. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," Papers 1805.09427, arXiv.org, revised Sep 2018.
    18. Kenichiro Shiraya & Akihiko Takahashi, 2017. "Pricing Average and Spread Options under Local-Stochastic Volatility Jump-Diffusion Models (Revised version of CARF-F-365 : Subsequently published in Mathematics of Operations Research)," CARF F-Series CARF-F-426, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    19. Kailin Ding & Zhenyu Cui & Xiaoguang Yang, 2023. "Pricing arithmetic Asian and Amerasian options: A diffusion operator integral expansion approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(2), pages 217-241, February.
    20. Gambaro, Anna Maria & Kyriakou, Ioannis & Fusai, Gianluca, 2020. "General lattice methods for arithmetic Asian options," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1185-1199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:266:y:2018:i:3:p:1134-1139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.