IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v478y2024ics0096300324002947.html
   My bibliography  Save this article

Efficient valuation of guaranteed minimum accumulation benefits in regime switching jump diffusion models with lapse risk

Author

Listed:
  • Zhang, Zhimin
  • Zhong, Wei

Abstract

We present a streamlined valuation method for the guaranteed minimum accumulation benefits incorporated within variable annuity contracts. At each contract renewal date, the insurer updates the policyholder's account value to the higher of the guaranteed value and the equity-linked investment value. In addition, we introduce lapse risks into the variable annuity contract, modeling the lapse decision under the assumption of stochastic intensity. Utilizing a combination of continuous-time Markov chain approximation and the Fourier cosine series expansion method, we derive closed-form valuation formulas under regime switching jump diffusion models. Numerical simulations showcase the precision and effectiveness of the proposed approach.

Suggested Citation

  • Zhang, Zhimin & Zhong, Wei, 2024. "Efficient valuation of guaranteed minimum accumulation benefits in regime switching jump diffusion models with lapse risk," Applied Mathematics and Computation, Elsevier, vol. 478(C).
  • Handle: RePEc:eee:apmaco:v:478:y:2024:i:c:s0096300324002947
    DOI: 10.1016/j.amc.2024.128833
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324002947
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128833?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laura Ballotta & Ernst Eberlein & Thorsten Schmidt & Raghid Zeineddine, 2020. "Variable annuities in a Lévy-based hybrid model with surrender risk," Quantitative Finance, Taylor & Francis Journals, vol. 20(5), pages 867-886, May.
    2. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    3. Kang, Boda & Shen, Yang & Zhu, Dan & Ziveyi, Jonathan, 2022. "Valuation of guaranteed minimum maturity benefits under generalised regime-switching models using the Fourier Cosine method," Insurance: Mathematics and Economics, Elsevier, vol. 105(C), pages 96-127.
    4. Zhao, Yixing & Mamon, Rogemar & Gao, Huan, 2018. "A two-decrement model for the valuation and risk measurement of a guaranteed annuity option," Econometrics and Statistics, Elsevier, vol. 8(C), pages 231-249.
    5. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    6. Ulm, Eric R., 2008. "Analytic Solution for Return of Premium and Rollup Guaranteed Minimum Death Benefit Options Under Some Simple Mortality Laws," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 543-563, November.
    7. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    8. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.
    9. Lingfei Li & Gongqiu Zhang, 2018. "Error analysis of finite difference and Markov chain approximations for option pricing," Mathematical Finance, Wiley Blackwell, vol. 28(3), pages 877-919, July.
    10. Ning Cai & Yingda Song & Steven Kou, 2015. "A General Framework for Pricing Asian Options Under Markov Processes," Operations Research, INFORMS, vol. 63(3), pages 540-554, June.
    11. Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2012. "Valuing equity-linked death benefits and other contingent options: A discounted density approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 73-92.
    12. J. Lars Kirkby & Jean-Philippe Aguilar, 2023. "Valuation and optimal surrender of variable annuities with guaranteed minimum benefits and periodic fees," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2023(6), pages 624-654, July.
    13. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    14. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2017. "Equity-linked annuity pricing with cliquet-style guarantees in regime-switching and stochastic volatility models with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 46-62.
    15. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
    16. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    17. Marjon Ruijter & Kees Oosterlee, 2012. "Two-dimensional Fourier cosine series expansion method for pricing financial options," CPB Discussion Paper 225, CPB Netherlands Bureau for Economic Policy Analysis.
    18. Huang, Yiming & Mamon, Rogemar & Xiong, Heng, 2022. "Valuing guaranteed minimum accumulation benefits by a change of numéraire approach," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 1-26.
    19. Junike, Gero & Pankrashkin, Konstantin, 2022. "Precise option pricing by the COS method—How to choose the truncation range," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    20. Anne MacKay & Marie-Claude Vachon & Zhenyu Cui, 2023. "Analysis of VIX-linked fee incentives in variable annuities via continuous-time Markov chain approximation," Quantitative Finance, Taylor & Francis Journals, vol. 23(7-8), pages 1055-1078, August.
    21. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    22. Mahayni, Antje & Schneider, Judith C., 2012. "Variable annuities and the option to seek risk: Why should you diversify?," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2417-2428.
    23. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    24. Siu, Chi Chung & Yam, Sheung Chi Phillip & Yang, Hailiang, 2015. "Valuing Equity-Linked Death Benefits In A Regime-Switching Framework," ASTIN Bulletin, Cambridge University Press, vol. 45(2), pages 355-395, May.
    25. Feng, Runhuan & Yi, Bingji, 2019. "Quantitative modeling of risk management strategies: Stochastic reserving and hedging of variable annuity guaranteed benefits," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 60-73.
    26. Russo, Vincenzo & Giacometti, Rosella & Fabozzi, Frank J., 2017. "Intensity-based framework for surrender modeling in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 189-196.
    27. Kirkby, J. Lars, 2023. "Hybrid equity swap, cap, and floor pricing under stochastic interest by Markov chain approximation," European Journal of Operational Research, Elsevier, vol. 305(2), pages 961-978.
    28. Gero Junike & Konstantin Pankrashkin, 2021. "Precise option pricing by the COS method--How to choose the truncation range," Papers 2109.01030, arXiv.org, revised Jan 2022.
    29. Chia Chun Lo & Konstantinos Skindilias, 2014. "An Improved Markov Chain Approximation Methodology: Derivatives Pricing And Model Calibration," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(07), pages 1-22.
    30. Jennifer Alonso-García & Oliver Wood & Jonathan Ziveyi, 2018. "Pricing and hedging guaranteed minimum withdrawal benefits under a general Lévy framework using the COS method," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 1049-1075, June.
    31. Kirkby, J.L. & Nguyen, Dang H. & Nguyen, Duy & Nguyen, Nhu N., 2022. "Maximum likelihood estimation of diffusions by continuous time Markov chain," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirkby, J. Lars, 2023. "Hybrid equity swap, cap, and floor pricing under stochastic interest by Markov chain approximation," European Journal of Operational Research, Elsevier, vol. 305(2), pages 961-978.
    2. Kirkby, J.L. & Nguyen, Dang H. & Nguyen, Duy & Nguyen, Nhu N., 2022. "Maximum likelihood estimation of diffusions by continuous time Markov chain," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    3. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    4. Teng, Ye & Zhang, Zhimin, 2023. "Finite-time expected present value of operating costs until ruin in a Cox risk model with periodic observation," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    5. Wang, Yayun & Zhang, Zhimin & Yu, Wenguang, 2021. "Pricing equity-linked death benefits by complex Fourier series expansion in a regime-switching jump diffusion model," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    6. Kirkby, J. Lars & Nguyen, Dang H. & Nguyen, Duy, 2020. "A general continuous time Markov chain approximation for multi-asset option pricing with systems of correlated diffusions," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    7. Deelstra, Griselda & Hieber, Peter, 2023. "Randomization and the valuation of guaranteed minimum death benefits," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1218-1236.
    8. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    9. Wenguang Yu & Yaodi Yong & Guofeng Guan & Yujuan Huang & Wen Su & Chaoran Cui, 2019. "Valuing Guaranteed Minimum Death Benefits by Cosine Series Expansion," Mathematics, MDPI, vol. 7(9), pages 1-15, September.
    10. Marie-Claude Vachon & Anne Mackay, 2024. "A Unifying Approach for the Pricing of Debt Securities," Papers 2403.06303, arXiv.org, revised Oct 2024.
    11. Meier, Christian & Li, Lingfei & Zhang, Gongqiu, 2023. "Simulation of multidimensional diffusions with sticky boundaries via Markov chain approximation," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1292-1308.
    12. Ding, Kailin & Ning, Ning, 2021. "Markov chain approximation and measure change for time-inhomogeneous stochastic processes," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    13. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    14. Ballotta, Laura & Eberlein, Ernst & Schmidt, Thorsten & Zeineddine, Raghid, 2021. "Fourier based methods for the management of complex life insurance products," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 320-341.
    15. Svetlana Boyarchenko & Sergei Levendorskiä¬ & J. Lars Kyrkby & Zhenyu Cui, 2021. "Sinh-Acceleration For B-Spline Projection With Option Pricing Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(08), pages 1-50, December.
    16. Rupak Chatterjee & Zhenyu Cui & Jiacheng Fan & Mingzhe Liu, 2018. "An efficient and stable method for short maturity Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(12), pages 1470-1486, December.
    17. Wensheng Yang & Jingtang Ma & Zhenyu Cui, 2021. "Analysis of Markov chain approximation for Asian options and occupation-time derivatives: Greeks and convergence rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 359-412, April.
    18. Michael Samet & Christian Bayer & Chiheb Ben Hammouda & Antonis Papapantoleon & Ra'ul Tempone, 2022. "Optimal Damping with Hierarchical Adaptive Quadrature for Efficient Fourier Pricing of Multi-Asset Options in L\'evy Models," Papers 2203.08196, arXiv.org, revised Oct 2023.
    19. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    20. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:478:y:2024:i:c:s0096300324002947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.