IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v13y2010i01ns0219024910005668.html
   My bibliography  Save this article

Efficient, Almost Exact Simulation Of The Heston Stochastic Volatility Model

Author

Listed:
  • ALEXANDER VAN HAASTRECHT

    (Department of Finance, VU University Amsterdam, De Boelelaan 1105, 1081HV Amsterdam, The Netherlands;
    Delta Lloyd Life, Expertise Centrum, Spaklerweg 4, PO Box 1000, 1000BA Amsterdam, The Netherlands)

  • ANTOON PELSSER

    (Department of Finance and Department of Actuarial Sciences, Maastricht University, The Netherlands)

Abstract

We deal with discretization schemes for the simulation of the Heston stochastic volatility model. These simulation methods yield a popular and flexible pricing alternative for pricing and managing a book of exotic derivatives which cannot be valued using closed-form expressions. For the Heston dynamics an exact simulation method was developed by Broadie and Kaya (2006), however we argue why its practical use is limited. Instead we focus on efficient approximations of the exact scheme, aimed to resolve the disadvantages of this method; one of the main bottlenecks in the exact scheme is the simulation of the Non-central Chi-squared distributed variance process, for which we suggest an efficient caching technique. At first sight the creation of a cache containing the inverses of this distribution might seem straightforward, however as the parameter space of the inverse Non-central Chi-squared distribution is three-dimensional, the design of such a direct cache is rather complicated, as pointed out by Broadie and Andersen. Nonetheless, for the case of the Heston model we are able to tackle this dimensionality problem and show that the three-dimensional inverse of the non-central chi-squared distribution can effectively be reduced to a one dimensional cache. The performed analysis hence leads to the development of three new efficient simulation methods (the NCI, NCI-QE and BK-DI scheme). Finally, we conclude with a comprehensive numerical study of these new schemes and the exact scheme of Broadie and Kaya, the almost exact scheme of Smith, the Kahl-Jäckel scheme, the FT scheme of Lord et al. and the QE-M scheme of Andersen. From these results, we find that the QE-M scheme is the most efficient, followed closely by the NCI-M, NCI-QE-M and BK-DI-M schemes, whilst we observe that all other considered schemes perform a factor 6 to 70 times less efficient than the latter four methods.

Suggested Citation

  • Alexander Van Haastrecht & Antoon Pelsser, 2010. "Efficient, Almost Exact Simulation Of The Heston Stochastic Volatility Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 1-43.
  • Handle: RePEc:wsi:ijtafx:v:13:y:2010:i:01:n:s0219024910005668
    DOI: 10.1142/S0219024910005668
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024910005668
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024910005668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael A. Kouritzin, 2016. "Explicit Heston Solutions and Stochastic Approximation for Path-dependent Option Pricing," Papers 1608.02028, arXiv.org, revised Apr 2018.
    2. Chulmin Kang & Wanmo Kang & Jong Mun Lee, 2017. "Exact Simulation of the Wishart Multidimensional Stochastic Volatility Model," Operations Research, INFORMS, vol. 65(5), pages 1190-1206, October.
    3. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    4. Mordecai Avriel & Jens Hilscher & Alon Raviv, 2013. "Inflation Derivatives Under Inflation Target Regimes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(10), pages 911-938, October.
    5. Choi, Jaehyuk & Kwok, Yue Kuen, 2024. "Simulation schemes for the Heston model with Poisson conditioning," European Journal of Operational Research, Elsevier, vol. 314(1), pages 363-376.
    6. Pingping Zeng & Ziqing Xu & Pingping Jiang & Yue Kuen Kwok, 2023. "Analytical solvability and exact simulation in models with affine stochastic volatility and Lévy jumps," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 842-890, July.
    7. Sergii Kuchuk-Iatsenko & Yuliya Mishura, 2016. "Option pricing in the model with stochastic volatility driven by Ornstein--Uhlenbeck process. Simulation," Papers 1601.01128, arXiv.org.
    8. Nico Achtsis & Ronald Cools & Dirk Nuyens, 2012. "Conditional sampling for barrier option pricing under the Heston model," Papers 1207.6566, arXiv.org, revised Dec 2012.
    9. Michael A. Kouritzin, 2018. "Explicit Heston Solutions And Stochastic Approximation For Path-Dependent Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-45, February.
    10. Mariano González-Sánchez & Eva M. Ibáñez Jiménez & Ana I. Segovia San Juan, 2022. "Market and model risks: a feasible joint estimate methodology," Risk Management, Palgrave Macmillan, vol. 24(3), pages 187-213, September.
    11. Xianming Sun & Siqing Gan, 2014. "An Efficient Semi-Analytical Simulation for the Heston Model," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 433-445, April.
    12. Bégin Jean-François & Bédard Mylène & Gaillardetz Patrice, 2015. "Simulating from the Heston model: A gamma approximation scheme," Monte Carlo Methods and Applications, De Gruyter, vol. 21(3), pages 205-231, September.
    13. Simon J. A. Malham & Jiaqi Shen & Anke Wiese, 2020. "Series expansions and direct inversion for the Heston model," Papers 2008.08576, arXiv.org, revised Jan 2021.
    14. Jaehyuk Choi & Yue Kuen Kwok, 2023. "Simulation schemes for the Heston model with Poisson conditioning," Papers 2301.02800, arXiv.org, revised Nov 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:13:y:2010:i:01:n:s0219024910005668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.