IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v15y2012i02ns0219024912500161.html
   My bibliography  Save this article

A Low-Bias Simulation Scheme For The Sabr Stochastic Volatility Model

Author

Listed:
  • BIN CHEN

    (CWI, Center for Mathematics and Computer Science, Amsterdam, The Netherlands;
    Derivative Research & Validation, Rabobank International, Utrecht, The Netherlands)

  • CORNELIS W. OOSTERLEE

    (CWI, Center for Mathematics and Computer Science, Amsterdam, The Netherlands)

  • HANS VAN DER WEIDE

    (Faculty of Electrical Engineering, Mathematics and Computer Science, TU Delft, The Netherlands)

Abstract

The Stochastic Alpha Beta Rho Stochastic Volatility (SABR-SV) model is widely used in the financial industry for the pricing of fixed income instruments. In this paper we develop a low-bias simulation scheme for the SABR-SV model, which deals efficiently with (undesired) possible negative values in the asset price process, the martingale property of the discrete scheme and the discretization bias of commonly used Euler discretization schemes. The proposed algorithm is based the analytic properties of the governing distribution. Experiments with realistic model parameters show that this scheme is robust for interest rate valuation.

Suggested Citation

  • Bin Chen & Cornelis W. Oosterlee & Hans Van Der Weide, 2012. "A Low-Bias Simulation Scheme For The Sabr Stochastic Volatility Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-37.
  • Handle: RePEc:wsi:ijtafx:v:15:y:2012:i:02:n:s0219024912500161
    DOI: 10.1142/S0219024912500161
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024912500161
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024912500161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ola Elerian, 1998. "A note on the existence of a closed form conditional transition density for the Milstein scheme," Economics Series Working Papers 1998-W18, University of Oxford, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaehyuk Choi & Byoung Ki Seo, 2023. "Option pricing under the normal SABR model with Gaussian quadratures," Papers 2301.02797, arXiv.org.
    2. Choi, Jaehyuk & Wu, Lixin, 2021. "The equivalent constant-elasticity-of-variance (CEV) volatility of the stochastic-alpha-beta-rho (SABR) model," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    3. Brignone, Riccardo & Gonzato, Luca, 2024. "Exact simulation of the Hull and White stochastic volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    4. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    5. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2017. "Fast Quantization of Stochastic Volatility Models," Papers 1704.06388, arXiv.org.
    6. Blanka Horvath & Oleg Reichmann, 2018. "Dirichlet Forms and Finite Element Methods for the SABR Model," Papers 1801.02719, arXiv.org.
    7. Jaehyuk Choi & Chenru Liu & Byoung Ki Seo, 2019. "Hyperbolic normal stochastic volatility model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 186-204, February.
    8. Julio Guerrero & Giuseppe Orlando, 2022. "Stochastic Local Volatility models and the Wei-Norman factorization method," Papers 2201.11241, arXiv.org.
    9. Ning Cai & Yingda Song & Nan Chen, 2017. "Exact Simulation of the SABR Model," Operations Research, INFORMS, vol. 65(4), pages 931-951, August.
    10. Christian Bayer & Peter Friz & Ronnie Loeffen, 2012. "Semi-closed form cubature and applications to financial diffusion models," Quantitative Finance, Taylor & Francis Journals, vol. 13(5), pages 769-782, October.
    11. Leitao, Álvaro & Oosterlee, Cornelis W. & Ortiz-Gracia, Luis & Bohte, Sander M., 2018. "On the data-driven COS method," Applied Mathematics and Computation, Elsevier, vol. 317(C), pages 68-84.
    12. Jaehyuk Choi & Lilian Hu & Yue Kuen Kwok, 2024. "Efficient simulation of the SABR model," Papers 2408.01898, arXiv.org.
    13. Leitao, Álvaro & Grzelak, Lech A. & Oosterlee, Cornelis W., 2017. "On a one time-step Monte Carlo simulation approach of the SABR model: Application to European options," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 461-479.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    2. Erik Lindström, 2007. "Estimating parameters in diffusion processes using an approximate maximum likelihood approach," Annals of Operations Research, Springer, vol. 151(1), pages 269-288, April.
    3. Georg Mosburger & Paul Schneider, 2005. "Modelling International Bond Markets with Affine Term Structure Models," Finance 0509003, University Library of Munich, Germany.
    4. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    5. Xiao Huang, 2011. "Quasi‐maximum likelihood estimation of discretely observed diffusions," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 241-256, July.
    6. Isambi Mbalawata & Simo Särkkä & Heikki Haario, 2013. "Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering," Computational Statistics, Springer, vol. 28(3), pages 1195-1223, June.
    7. Lubrano, Michel, 2004. "Modélisation bayésienne non linéaire du taux d’intérêt de court terme américain : l’aide des outils non paramétriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 465-499, Juin-Sept.
    8. Zhang, Le & Schmidt, Wolfgang M., 2016. "An approximation of small-time probability density functions in a general jump diffusion model," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 741-758.
    9. Leah Kelly, 2004. "Inference and Intraday Analysis of Diversified World Stock Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 24, July-Dece.
    10. Peter C.B.Phillips & Jun Yu, "undated". "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Working Papers CoFie-08-2009, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    11. Brandt, Michael W. & Santa-Clara, Pedro, 2002. "Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets," Journal of Financial Economics, Elsevier, vol. 63(2), pages 161-210, February.
    12. Hurn, A.S. & Lindsay, K.A. & McClelland, A.J., 2013. "A quasi-maximum likelihood method for estimating the parameters of multivariate diffusions," Journal of Econometrics, Elsevier, vol. 172(1), pages 106-126.
    13. Al-Zoubi, Haitham A., 2019. "Bond and option prices with permanent shocks," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 272-290.
    14. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Teaching an old dog new tricks: Improved estimation of the parameters of SDEs by numerical solution of the Fokker-Planck equation," Stan Hurn Discussion Papers 2006-01, School of Economics and Finance, Queensland University of Technology.
    15. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    16. Tse, Y.K. & Zhang, Bill & Yu, Jun, 2002. "Estimation of Hyperbolic Diffusion using MCMC Method," Working Papers 182, Department of Economics, The University of Auckland.
    17. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    18. Leah Kelly, 2004. "Inference and Intraday Analysis of Diversified World Stock Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2004, January-A.
    19. Patrice Takam Soh & Eugene Kouassi & Renaud Fadonougbo & Martin Kegnenlezom, 2021. "Estimation of a CIR process with jumps using a closed form approximation likelihood under a strong approximation of order 1," Computational Statistics, Springer, vol. 36(2), pages 1153-1176, June.
    20. Jun Yu, 2009. "Econometric Analysis of Continuous Time Models : A Survey of Peter Phillips’ Work and Some New Results," Microeconomics Working Papers 23046, East Asian Bureau of Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:15:y:2012:i:02:n:s0219024912500161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.