IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1405.3561.html
   My bibliography  Save this paper

An explicit Euler scheme with strong rate of convergence for financial SDEs with non-Lipschitz coefficients

Author

Listed:
  • Jean-Francois Chassagneux
  • Antoine Jacquier
  • Ivo Mihaylov

Abstract

We consider the approximation of stochastic differential equations (SDEs) with non-Lipschitz drift or diffusion coefficients. We present a modified explicit Euler-Maruyama discretisation scheme that allows us to prove strong convergence, with a rate. Under some regularity and integrability conditions, we obtain the optimal strong error rate. We apply this scheme to SDEs widely used in the mathematical finance literature, including the Cox-Ingersoll-Ross~(CIR), the 3/2 and the Ait-Sahalia models, as well as a family of mean-reverting processes with locally smooth coefficients. We numerically illustrate the strong convergence of the scheme and demonstrate its efficiency in a multilevel Monte Carlo setting.

Suggested Citation

  • Jean-Francois Chassagneux & Antoine Jacquier & Ivo Mihaylov, 2014. "An explicit Euler scheme with strong rate of convergence for financial SDEs with non-Lipschitz coefficients," Papers 1405.3561, arXiv.org, revised Apr 2016.
  • Handle: RePEc:arx:papers:1405.3561
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1405.3561
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Giles & Desmond Higham & Xuerong Mao, 2009. "Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff," Finance and Stochastics, Springer, vol. 13(3), pages 403-413, September.
    2. Alfonsi, Aurélien, 2013. "Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 602-607.
    3. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    6. Andreas Neuenkirch & Lukasz Szpruch, 2012. "First order strong approximations of scalar SDEs with values in a domain," Papers 1209.0390, arXiv.org.
    7. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario Hefter & Arnulf Jentzen, 2019. "On arbitrarily slow convergence rates for strong numerical approximations of Cox–Ingersoll–Ross processes and squared Bessel processes," Finance and Stochastics, Springer, vol. 23(1), pages 139-172, January.
    2. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    3. Ngo, Hoang Long & Luong, Duc Trong, 2019. "Tamed Euler–Maruyama approximation for stochastic differential equations with locally Hölder continuous diffusion coefficients," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 133-140.
    4. Yifan Bai & Xing Huang, 2023. "Log-Harnack Inequality and Exponential Ergodicity for Distribution Dependent Chan–Karolyi–Longstaff–Sanders and Vasicek Models," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1902-1921, September.
    5. Blanka Horvath & Oleg Reichmann, 2018. "Dirichlet Forms and Finite Element Methods for the SABR Model," Papers 1801.02719, arXiv.org.
    6. Gao, Xiangyu & Wang, Jianqiao & Wang, Yanxia & Yang, Hongfu, 2022. "The truncated Euler–Maruyama method for CIR model driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 189(C).
    7. C'onall Kelly & Gabriel J. Lord, 2021. "An adaptive splitting method for the Cox-Ingersoll-Ross process," Papers 2112.09465, arXiv.org, revised Feb 2023.
    8. Andrei Cozma & Christoph Reisinger, 2017. "Strong order 1/2 convergence of full truncation Euler approximations to the Cox-Ingersoll-Ross process," Papers 1704.07321, arXiv.org, revised Oct 2018.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrei Cozma & Christoph Reisinger, 2017. "Strong convergence rates for Euler approximations to a class of stochastic path-dependent volatility models," Papers 1706.07375, arXiv.org, revised Oct 2018.
    2. Andrei Cozma & Christoph Reisinger, 2017. "Strong order 1/2 convergence of full truncation Euler approximations to the Cox-Ingersoll-Ross process," Papers 1704.07321, arXiv.org, revised Oct 2018.
    3. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    4. Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2020. "Multilevel Monte Carlo with Numerical Smoothing for Robust and Efficient Computation of Probabilities and Densities," Papers 2003.05708, arXiv.org, revised Oct 2023.
    5. Andrei Cozma & Christoph Reisinger, 2015. "Exponential integrability properties of Euler discretization schemes for the Cox-Ingersoll-Ross process," Papers 1601.00919, arXiv.org.
    6. Mike Giles & Lukasz Szpruch, 2012. "Multilevel Monte Carlo methods for applications in finance," Papers 1212.1377, arXiv.org.
    7. Mouna Ben Derouich & Ahmed Kebaier, 2022. "Interpolated Drift Implicit Euler MLMC Method for Barrier Option Pricing and application to CIR and CEV Models," Papers 2210.00779, arXiv.org, revised Sep 2024.
    8. Xiu, Dacheng, 2014. "Hermite polynomial based expansion of European option prices," Journal of Econometrics, Elsevier, vol. 179(2), pages 158-177.
    9. Antoine Jacquier & Emma R. Malone & Mugad Oumgari, 2019. "Stacked Monte Carlo for option pricing," Papers 1903.10795, arXiv.org.
    10. Diep Duong & Norman R. Swanson, 2011. "Volatility in Discrete and Continuous Time Models: A Survey with New Evidence on Large and Small Jumps," Departmental Working Papers 201117, Rutgers University, Department of Economics.
    11. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    12. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    13. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    14. Chang, Eric C. & Ren, Jinjuan & Shi, Qi, 2009. "Effects of the volatility smile on exchange settlement practices: The Hong Kong case," Journal of Banking & Finance, Elsevier, vol. 33(1), pages 98-112, January.
    15. Rui Vilela Mendes & M. J. Oliveira, 2006. "A data-reconstructed fractional volatility model," Papers math/0602013, arXiv.org, revised Jun 2007.
    16. H. Bertholon & A. Monfort & F. Pegoraro, 2008. "Econometric Asset Pricing Modelling," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 407-458, Fall.
    17. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    18. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    19. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    20. Ahmed Kebaier & J'er^ome Lelong, 2015. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Papers 1510.03590, arXiv.org, revised Jul 2017.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1405.3561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.