IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v17y2014i07ns0219024914500472.html
   My bibliography  Save this article

An Improved Markov Chain Approximation Methodology: Derivatives Pricing And Model Calibration

Author

Listed:
  • CHIA CHUN LO

    (Faculty of Business Administration, University of Macau, Avenida Padre Toms Pereira, Taipa, Macau, China)

  • KONSTANTINOS SKINDILIAS

    (Department of Mathematics, School of Computing and Mathematical Sciences, University of Greenwich, Old Royal Naval College, London, SE10 9LS, United Kingdom)

Abstract

This paper presents an improved continuous-time Markov chain approximation (MCA) methodology for pricing derivatives and for calibrating model parameters. We propose a generalized nonequidistant grid model for a general stochastic differential equation, and extend the proposed model to accommodate a jump component. Because the prices of derivatives generated by the MCA models are sensitive to the setting of the chain's state space, we suggest a heuristic determination of the grid spacing such that the Kolmogorov–Smirnov distance between the underlying distribution and the MCA distribution is minimized. The continuous time setting allows us to introduce semi-analytical formulas for pricing European and American style options. The numerical examples demonstrate that the proposed model with a nonequidistant grid setting provides superior results over the equidistant grid setting. Finally, we present the MCA maximum likelihood estimator for a jump-diffusion process. The encouraging results from the simulation and empirical studies provide insight into calibration problems in finance where the density function of a jump-diffusion model is unknown.

Suggested Citation

  • Chia Chun Lo & Konstantinos Skindilias, 2014. "An Improved Markov Chain Approximation Methodology: Derivatives Pricing And Model Calibration," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(07), pages 1-22.
  • Handle: RePEc:wsi:ijtafx:v:17:y:2014:i:07:n:s0219024914500472
    DOI: 10.1142/S0219024914500472
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024914500472
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024914500472?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie-Claude Vachon & Anne Mackay, 2024. "A Unifying Approach for the Pricing of Debt Securities," Papers 2403.06303, arXiv.org, revised Oct 2024.
    2. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    3. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2017. "Equity-linked annuity pricing with cliquet-style guarantees in regime-switching and stochastic volatility models with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 46-62.
    4. Teng, Ye & Zhang, Zhimin, 2023. "Finite-time expected present value of operating costs until ruin in a Cox risk model with periodic observation," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    5. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    6. Kirkby, J. Lars, 2023. "Hybrid equity swap, cap, and floor pricing under stochastic interest by Markov chain approximation," European Journal of Operational Research, Elsevier, vol. 305(2), pages 961-978.
    7. Zhenyu Cui & Anne MacKay & Marie-Claude Vachon, 2022. "Analysis of VIX-linked fee incentives in variable annuities via continuous-time Markov chain approximation," Papers 2207.14793, arXiv.org.
    8. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    9. Lo, C.C. & Nguyen, D. & Skindilias, K., 2017. "A Unified Tree approach for options pricing under stochastic volatility models," Finance Research Letters, Elsevier, vol. 20(C), pages 260-268.
    10. Kirkby, J.L. & Nguyen, Dang H. & Nguyen, Duy & Nguyen, Nhu N., 2022. "Maximum likelihood estimation of diffusions by continuous time Markov chain," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    11. Harish S. Bhat & Nitesh Kumar, 2015. "Large-Scale Empirical Tests of the Markov Tree Model," IJFS, MDPI, vol. 3(3), pages 1-39, July.
    12. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    13. Anne Mackay & Marie-Claude Vachon, 2023. "On an Optimal Stopping Problem with a Discontinuous Reward," Papers 2311.03538, arXiv.org, revised Nov 2023.
    14. Wensheng Yang & Jingtang Ma & Zhenyu Cui, 2021. "Analysis of Markov chain approximation for Asian options and occupation-time derivatives: Greeks and convergence rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 359-412, April.
    15. Günther, Sascha & Hieber, Peter, 2024. "Analyzing the interest rate risk of equity-indexed annuities via scenario matrices," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 15-28.
    16. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
    17. Rupak Chatterjee & Zhenyu Cui & Jiacheng Fan & Mingzhe Liu, 2018. "An efficient and stable method for short maturity Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(12), pages 1470-1486, December.
    18. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:17:y:2014:i:07:n:s0219024914500472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.